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Abstract
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Does immigration cause more or less innovation and growth? In this paper, we answer this

question in the context of international migration to the US over the last four decades. We find

a positive causal impact of immigration on innovation and wage growth at the local level (US

counties) over a short horizon (five-year periods) and interpret these findings through the lens

of a model of endogenous growth and migrations.

Canonical theories of economic growth suggest a role for immigrants in driving local eco-

nomic outcomes. Immigrants bring ideas, skills, and effort, and increase demand for new

inventions, which stimulates growth (Romer, 1990; Jones, 1995). In the presence of frictions on

mobility, trade, or idea flows, regional models suggest immigrants should have local, not just

aggregate, effects on innovation and wages (Desmet et al., 2018; Peters, 2022). In contrast to

these predictions, fierce political controversies surround the economic contribution of migrants:

do migrants drain resources from their host communities and stifle innovation?

A rigorous quantification of the causal impact of immigration on innovation and growth

has often proven elusive. The reason is that migrants do not allocate randomly across space.

Instead, they are likely to choose innovative destinations that offer the best prospects for them,

creating a spurious correlation between immigration, innovation, and economic growth.

We make three main contributions to the literature on immigration and growth. First,

we propose a formal identification strategy to estimate the causal impact of migrations on

innovation and wage growth. We build upon the seminal work of Card (2001) but add one key

innovation: instead of using the realized pre-existing distribution of foreign origins to predict

new migrations, we construct a granular set of instruments for this pre-existing distribution,

using 130 years of country-county-level migration data. Second, we show that immigration

causes a large and persistent increase in local innovations and in the wages earned by natives.

Immigration also has distributional effects: more educated natives benefit more from it, and

more educated migrants have a stronger positive impact on local wages and innovations. Third,

we combine this credibly identified evidence with a regional model of innovation and migrations

to structurally estimate the local elasticity of innovation to research labor. This elasticity

determines the size of local scale effects and the aggregate response to large-scale immigration.

Our structural model also helps reconcile the seemingly contradictory evidence on the im-

pact of immigration on native wages (Card, 1990; Borjas, 2003): immigration, a labor supply

shock, exerts a negative neo-classical downward pressure on wage; but it also induces dynamic

innovations and wage growth. For the US, on average over the last 40 years, the positive impact

from innovation dominates the negative impact from increased labor supply.
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We now turn to a description of our three main contributions.

Our first contribution is a granular identification strategy able to isolate quasi-random immi-

gration shocks for each US county in each five-year period starting in 1975. As in the canonical

shift-share approach, we rely on the tendency of newly arriving migrants to settle in US coun-

ties with large pre-existing communities of the same origin. But instead of using past realized

immigration (Card, 2001) or ancestry (Tabellini, 2019) to measure the pre-existing distribution

of foreign origins, we instrument for the pre-existing ancestry distribution (Burchardi et al.,

2019). Doing so, we guard against the concern that where migrants choose to settle within

the US, both in recent decades (the distribution of immigrants) and in the more distant past

(the distribution of ancestry), may be correlated with persistent productivity shocks and other

unobserved factors that also affect local innovation and growth.1

To isolate quasi random immigration shocks, we proceed in two steps. In a first step, we

follow the method in Burchardi et al. (2019) to construct a set of instruments for the pre-

existing distribution of foreign ancestry in 1975. For each period starting in 1880, we predict

the number of migrants from a given origin country to a given destination county by interacting

the total number of migrants arriving in the US from that country with the share of foreign

migrants from other origins who settle in that US county. Iterating this procedure over 100

years, we isolate quasi-random variation in the distribution of ancestry across counties in 1975.

In a second step, we follow the canonical shift-share approach: for each period starting

in 1975, we estimate migration into a county from a foreign origin country using only the

interaction of predicted pre-existing ancestry and the contemporaneous inflow of migrants from

that origin. Summing over all origin countries, we predict the total number of migrants flowing

into each US county at each point in time post 1975 (our panel of immigration shocks).

To further guard against any lingering concerns about identification, we estimate the im-

pact of immigration shocks on changes in local innovation and growth, not levels. In many

specifications, we even include county fixed effects to control for county-specific trends.

Our second contribution is to quantify the causal impact of immigration on innovation and

growth in reduced form. We find a positive and significant causal impact of local immigration

on the growth in local patents filed per person: on average, the arrival of 10,000 additional

1David Card himself notes that past immigration shares may be endogenous (Card, 2001, p. 43), and a large
literature has since highlighted inference and consistency issues arising from this core issue (e.g. Adão et al.,
2019; Borusyak et al., 2021; Goldsmith-Pinkham et al., 2020; Jaeger et al., 2018). David Card further states
“[o]ne could potentially overcome this problem by finding a set of instruments that explain the location choices
of earlier immigrants from different source countries and using predicted settlement patterns of the earlier cohort
to construct the supply push indexes.” This is precisely the task we undertake in this paper.
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immigrants in a county (close to one standard deviation) increases growth in the flow of patents

over a five-year period by 1.22 patents per 100,000 residents, an increase of 25% relative to its

mean (4.61 new patents per 100,000 residents). Immigration also causes a significant increase

in local real income growth. 10,000 additional adult immigrants increase wages per capita by

$150 (in 2010 dollars), an 8% higher annual wage growth for local workers on average.

The positive effect of immigration on local wages is stronger for more educated native

workers: for instance, the same immigration shock increases the wages of college graduates five

times more than those of high school graduates. More educated migrants also have a stronger

positive impact on local innovation and wage growth: for instance, the increase in the flow of

patents caused by immigration is five times larger for migrants with one standard deviation

higher education (3.7 more years of schooling) than for migrants of average education (11

years of schooling). We also show that the positive effect of immigration on innovation comes

primarily from increased patenting by domestic inventors (about 80%), and to a smaller extent

from immigrant inventors and mixed teams of domestic and immigrant inventors. Finally, we

find evidence that the positive effect of immigration on innovation and wage growth diffuses

over space, with surrounding counties within 100km (60 miles) also benefiting significantly.

Our third contribution is to construct a structural model of endogenous growth and mi-

grations. We use this model to estimate the elasticity of local innovation to research labor,

to quantify the aggregate impact of immigration on innovation and growth, and to illustrate

the challenges to reduced-form identification. Migrants endogenously choose where to settle

within the US, preferring destinations with higher expected wages and larger communities of

their same origin. Workers in local labor markets innovate and produce goods. An immigra-

tion shock, a positive labor supply shock, decreases local labor cost, but also stimulates local

innovation and productivity growth, making workers more productive. Over a five-year period,

the innovation channel dominates so that local wages increase by a small amount initially; over

time these positive effects build up, leading to a persistent increase in local wages and inno-

vation. We structurally estimate our model, targeting the well-identified reduced form effect

of immigration on local innovation. We estimate an elasticity of local research output with

respect to local research labor equal to 0.8. In addition to governing the distribution of idea

production across regions, this elasticity disciplines the magnitude of the aggregate response

to immigration shocks. To illustrate this response, we conduct a counterfactual experiment,

removing the large rise in immigration to the US after the 1965 Immigration National Act (a

counterfactual reduction of approximately 1/6 of total population growth). This exercise sug-
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gests that without the increased immigration between 1965 and 2010, US per capita patenting

and income would be around 5% below their current steady state level.

We also show that within our model of endogenous migrations, the identification restriction

for a simple shift-share instrument for immigration as in Card (2001) and the subsequent litera-

ture are violated: a positive productivity shock increases wages and attracts migrants; because

local productivity shocks are highly persistent, the pre-existing distribution of foreign origins

correlates with contemporaneous productivity shocks for long periods of time. In contrast,

within our model, our identification strategy generates instruments that are orthogonal to such

shocks and also guard against more subtle, county-country specific, confounds to identification.

Related Literature. Our paper bridges four strands of the literature.

First, many studies use variants of the canonical shift-share instrument (Card, 2001) that

takes pre-existing foreign-origin shares as given. Recent micro-econometrics advances have clar-

ified the conditions under which shift-share designs are valid (Borusyak et al., 2021; Goldsmith-

Pinkham et al., 2020), and why they lead to over-rejection rates (Adão et al., 2019). We build

on this literature and isolate exogenous variation in the pre-existing spatial distribution of an-

cestry to construct plausibly exogenous immigration shocks to US counties not subject to these

concerns. We also explain, within the controlled environment of a structural model linking lo-

cal innovation to persistent productivity shocks and endogenous migrations, why conventional

shift-share designs are likely biased, while our identification strategy is not.

Second, we contribute to a large empirical literature on the link between immigration,

innovation, and technology adoption. This literature has documented large contributions of

high-skilled immigrants to innovation and dynamism in the US (Kerr and Lincoln, 2010; Hunt

and Gauthier-Loiselle, 2010; Stuen et al., 2012; Akcigit et al., 2017; Arkolakis et al., 2020;

Khanna and Lee, 2018), spillovers from the arrival of high-skilled scientists and inventors on

the productivity of their American peers (Borjas and Doran, 2012; Moser et al., 2014; Bernstein

et al., 2018; Moser et al., 2021), and the contribution of migrants to the diffusion of knowledge

across borders, local technology adoption, and output and employment (Kerr, 2008; Lewis,

2011; Lafortune et al., 2019; Tabellini, 2019; Sequeira et al., 2020).2 Our results confirm the

disproportionate positive impact of high-skilled migrants on innovation, but also show that the

positive impact of immigration is primarily driven by domestic innovators.

Third, we contribute to the labor literature on immigration and local labor markets (Borjas,

2Hanson (2009, 2010) and Lewis (2013) provide early surveys. Lewis and Peri (2015) and Abramitzky and
Boustan (2017) give an overview of the broader literature on the effect of immigration on regional economies.
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2003; Cortes, 2008; Ottaviano and Peri, 2012; Foged and Peri, 2016; Dustmann et al., 2017;

Monras, 2020; Jaeger et al., 2018; Bratsberg et al., 2019). We show that immigration has a nil

impact on the wages of the least educated native workers at the 5-year horizon, but a strong

positive impact for more educated workers. More educated migrants also have a stronger

positive impact on native wages.3 Moreover, our structural model suggests these effects are

time-varying: immigration increases labor supply which exerts downward pressure on wages on

impact; but it also fosters innovation, which increases labor productivity and wages over time.

This heterogeneity across groups and over time may explain the seemingly contradictory results

the empirical literature has documented in different settings. We show that for the US over the

last 40 years, the average local effect of immigration on wages is positive.

Fourth, endogenous growth theory predicts a positive impact of population growth on eco-

nomic growth and innovation (Romer, 1990), with the nature of these scale effects depending

upon the technology for producing ideas and the horizon of analysis (Jones, 1995, 1999; Peretto,

1998; Young, 1998; Laincz and Peretto, 2006; Bloom et al., 2020). The local effects of immi-

gration across models depends on frictions to mobility, trade, and idea diffusion (Desmet et al.,

2018; Peters, 2022; Monte et al., 2018; Giannone, 2019; Arkolakis et al., 2020). The quantita-

tive predictions of these models crucially rely on the local scale effect in innovation. Instead

of disciplining this object by matching moments of income growth, the usual approach, we

structurally estimate its value using our empirical estimates of the link between immigration

and innovation. Our counterfactual exercise also shows that local scale effects in innovation

govern the aggregate response to immigration, and contributes to a growing literature focused

on the interpretation of regional evidence (Nakamura and Steinsson, 2014; Guren et al., 2021).

The paper is structured as follows. Section 1 introduces our data. Section 2 lays out our

identification strategy. Section 3 estimates the causal effect of immigration on innovation and

wage growth. Section 4 structurally estimates a model of endogenous innovation and migrations.

1 Data

We collect detailed data on migration, ancestry, migrants’ education, patents, and local labor

markets. Throughout the paper, we use the subscripts o for origin country, d for US destination

county, t for the end year of a 5-year interval, and t− 1 for the end year of the previous 5-year

interval. Summary statistics are in Table 1 and further details are in Appendix A.

3Arkolakis et al. (2020) estimate the heterogeneous contribution of European immigrants of different skills
on US innovation 1880-1920. We document similar patterns for recent decades.
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Immigration and Ancestry. Following Burchardi et al. (2019), our immigration and

ancestry data are constructed from the individual files of the Integrated Public Use Microdata

Series (IPUMS) samples of the 1880, 1900, 1910, 1920, 1930, 1970, 1980, 1990, and 2000 waves

of the US census, and the 2006-2010 five-year sample of the American Community Survey.

We weigh observations using the personal weights provided by these data sources. Iodt is the

number of respondents who immigrated from o to d between t− 1 and t. Aodt is the number of

respondents in d who claim ancestry from o at t. Our dyadic dataset covers 3,141 US counties,

195 foreign countries, and 10 census waves. Appendix A.1 gives additional details.

Innovation. To measure innovation we use patent microdata from the US Patent and

Trademark Office (USPTO) from 1975 until 2010. We match the patent assignee locations

from the USPTO in coordinate form to 1990 US counties, tabulating the number of corporate

utility patents granted to assignees in each county in each year of the sample.4 The patent

flow in county d at t is the sum of patents filed in the 5-year period ending at t. We normalize

this variable by the 1970 county population to measure patent flow per capita. Our primary

outcome of interest is the change in patent flows per capita between the 5-year period ending

in t and the 5-year period ending in t− 1. Appendices A.2 and A.3 give additional details.

Wages. We compute from 1975 to 2010 the local average annual wages using the Quarterly

Census of Wages (QCEW) dataset from the US Bureau of Labor Statistics, deflated by the

Personal Consumption Expenditure price index. Our primary outcome of interest is the change

in real wages per capita over 5 years (measured in 2010 dollars). We also compute the change

in the average annual wages over 10 years, CPI-deflated, for US-born workers (natives) and the

subset of natives who have lived in the same county for five years (native non-movers) using

data from IPUMS USA. Appendix A.4 gives additional details.

2 Constructing a Valid Instrument for Immigration

Our aim is to estimate the causal impact of immigration on innovation and local wage growth,

which can inform a structural model of endogenous growth and migrations. We estimate

∆Yd,t = δt + δs(d) + β · Immigrationd,t + εd,t, (1)

where Immigrationd,t measures the number of migrants flowing into destination county d be-

tween t − 1 and t. ∆Yd,t is a change from t − 1 to t in the outcome of interest, usually the

4We use the location of assignees rather than innovators as the majority of recent patents are assigned to
corporations, unlike in earlier periods (Akcigit et al., 2017). For robustness, we also replicate our results using
alternative assignments, and various weights to control for patent quality (Hall et al., 2001).
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change in the number of patents filed per capita in the county. This specification in changes

ensures any long-lasting differences between counties that are on average more or less innovative

are controlled for, and eliminates the skewness of the left hand side variable. δt and δs(d) are

time and state fixed effects, respectively. Our most conservative specifications also include a

county fixed effect, δd, which controls for any county-specific trend in Yd,t, so that for example

we exploit only deviations from the county’s average growth of patent flows over time.

The main concern with a simple OLS estimate of β is that unobserved factors may affect

both immigration and innovation, even though we estimate (1) in differences, and even with

fixed effects that absorb state- or county-specific trends. We spell out two identification con-

cerns explicitly, and propose a solution. The first is a simple reverse causality concern: local

wages are likely correlated with local productivity shocks and innovation, and foreign migrants

are in part attracted by higher wages. This induces a spurious correlation between immigra-

tion and innovation, where counties that become more innovative attract more migrants over

time because they pay higher wages. The second is a county-country specific omitted factors

concern: workers from a specific country (say India) may disproportionately have specific skills

(say engineering) well-suited for specific sectors (say telegraph, aeronautics, and software devel-

opment) that are concentrated in a specific county (say Silicon Valley in Santa Clara county).

Any time a positive shock to productivity and innovation occurs in that sector (e.g. a shock to

the telegraph industry in the 1900’s, to aeronautics in the 1960’s, or to software development in

the 2000’s), workers from that country (India) will be drawn to this county (Silicon Valley) –

resulting in spurious correlations between local innovation, immigration, and foreign ancestry.5

We propose an identification strategy plausibly immune to both concerns. Drawing on the

seminal work of Card (2001), we leverage the tendency of incoming migrants to settle in US

counties with large pre-existing communities from the same ancestry. However, we depart from

Card (2001) and the subsequent literature employing the canonical shift-share approach by

using only plausibly exogenous variation in pre-existing ancestry.

The identification strategy is best described by a stylized example. We predict a relatively

large inflow of migrants from o (say Indians relative to other Asians) to d (say Fresno in the

Central Valley of California relative to other destinations on the West Coast) at a point in

history τ (say 1900) if the following happens: in 1900, many Indians migrate to the United

States including towards regions outside the West Coast (1900 corresponds to the first historical

5A conventional shift-share design would wrongly assume that pre-existing immigration or ancestry shares
(e.g. Indians engineers in Silicon Valley) are orthogonal to future innovation shocks (e.g. shocks to the tech
sector in Silicon Valley).
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Indian migration wave to the US) and Fresno county is attractive to foreign migrants from any

origin, including from Europe (1900 corresponds to the beginning of oil exploitation in Fresno,

and an increase in agricultural production following the construction of irrigation canals in the

late 19th Century). This early settlement of Indian migrants in Fresno partly explains the

large community of Indian ancestry in Fresno after 1975.6 Our identification strategy applies

this logic for all periods starting in 1880, all origin countries, and all destination counties. We

isolate granular variation in the ancestry composition of US counties that emanates solely from

the coincidence of migrants being ‘pushed’ from their country and ‘pulled’ into US counties

attractive to the average migrant. We then simply apply the Card (2001) shift-share method

using predicted ancestry: any time post-1975 there is a large inflow of migrants from India to the

US, we predict Fresno receives a positive immigration shock, because some newly arriving Indian

migrants choose to settle in Fresno with its large (exogenous) pre-existing Indian community.

Step 1: Predicting ancestry. To predict the number of residents with ancestry from o who

reside in d at t, Ao,d,t, we apply the method developed in Burchardi et al. (2019). We only

give a brief summary here. Burchardi et al. (2019) show that a simple reduced form model

of migrations driven by ‘push’ and ‘pull’ shocks, combined with a rigorous leave-out strategy,

allows to identify variations in Ao,d,t that are plausibly exogenous not only to local factors, d-

specific, but also to bilateral factors, (o, d)-specific. We develop a structural model of migrations

explicitly featuring those two forces in Section 4. Formally, we estimate

Ao,d,t = δo,r(d) + δc(o),d +X ′o,dζ +
t∑

τ=1880

ar(d),τIo,−r(d),τ
IEurope,d,τ
IEurope,·,τ

+ vo,d,t, (2)

where Io,−r(d),τ is the total number of migrants arriving from o at τ who settle in counties outside

of the region r(d) where d is located,7 a ‘push from o’ shock. IEurope,d,τ/IEurope,·,τ is the share of

European migrants who settle in d at τ , a ‘pull to d’ shock. δo,r(d) and δc(o),d are a series of origin

country × destination region and origin continent × destination county interacted fixed effects,

and Xo,d contains a series of time-invariant controls for {o, d} characteristics. We estimate (2)

separately for each t = 1980, 1985, 1990, 1995, 2000, 2005, 2010 using all non-European countries

in our sample. From this estimation, we derive predicted ancestry

Âo,d,t =
t∑

τ=1880

âr(d),τ

(
Io,−r(d),τ

IEurope,d,τ
IEurope,·,τ

)⊥
, (3)

6Appendix Figure 1 shows how the timing of migrations varies between foreign origins; one can notice the
early (small) spike in Indian migration in 1900. Appendix Figure 2 shows that US counties are attractive to
foreign (European) migrants at different points in time; Fresno in 1900 was attractive to Europeans migrants.

7‘Region’ refers to the nine US census divisions, on average 5 adjacent states (see Appendix Table 1).
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where âr(d),τ are the coefficients estimated from (2) and ⊥ indicates that the interaction of push

and pull factors has been residualized with respect to all of the controls in (2), isolating the

variation in predicted ancestry exclusively attributable to these instruments.

This reduced form regression captures the intuition above: we expect a large community of

ancestry from India living in Fresno in 1980 if many Indian migrants in 1900 settled outside

the West Coast (IIndia,−r(Fresno),1900 large) and Fresno in 1900 was attracting a large share of

European migrants (IEurope,Fresno,1900/IEurope,·,1900 large). Given both the ‘push-pull’ interaction and

the restrictive leave-out strategy (we exclude the West Coast from India’s push, and exclude all

non-European migrants from Fresno’s pull), we ensure that predicted ancestry from (2) does not

suffer from the endogeneity concerns above. For instance, we leave-out Indian migrants with

specific skills who may have endogenously chosen where to settle. Had we used realized ancestry

instead, we may have included 1980 descendants of 1960 Indian migrants with engineering skills

who endogenously settled in Silicon Valley at the time of the early development of aeronautics.

This would have induced a spurious correlation between contemporaneous Indian ancestry and

productivity and innovation shocks in Silicon Valley, such as software development in 2000.

Step 2: Predicting immigration. Having predicted pre-existing ancestry, we can now

simply apply the canonical shift-share approach by interacting predicted pre-existing ancestry

in a given county with contemporaneous (US-wide) immigration from that origin,

Io,d,t = δo,r(d) + δc(o),d + δt +X ′o,dθ + bt · [Âo,d,t−1 × Ĩo,−r(d),t] + uo,d,t, (4)

where again the δ’s are time, country×region, and continent×county fixed effects, X ′o,d observ-

able controls, Ât−1
o,d predicted ancestry from (3), and Ĩo,−r(d),t = Io,−r(d),t (IEurope,r(d),t/IEurope,−r(d),t)

the scaled push factor from o. (Because we leave out from Io,−r(d),t all migrants from o who

settle in d’s region, scaling by IEurope,r(d),t/IEurope,−r(d),t corrects for differences in region sizes.)

Adding up across foreign origins, we derive our main instrument for the total number of

migrants settling in county d in period t, Immigrationd,t in (1),

Î·,d,t =
∑
o

b̂t · [Âo,d,t−1 × Ĩo,−r(d),t]. (5)

This instrument predicts a large immigration shock to Fresno county in 2000 if (i) many Indians

migrate to the US in 2000 (excluding the West Coast), and (ii) we predict a large pre-existing

community of Indian ancestry in Fresno. The key innovation relative to Card (2001) is to rely

on predicted ancestry using historical migrations, instead of realized immigration or ancestry.
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Identifying assumption. A sufficient condition for the validity of this instrument is that

predicted ancestry, Âo,d,t−1, is exogenous in equation (1). With our baseline regional and

continental leave-outs, we can write this condition as

Io,−r(d),τ
IEurope,d,τ
IEurope,·,τ

⊥ εd,t∀o, τ ≤ t. (6)

It requires that any confounding factors that drive temporary increases in a given US county’s

innovation post-1975 (εd,t) do not systematically correlate with pre-1975 immigration from a

given origin to other regions within the US (Io,−r(d),τ ) interacted with the simultaneous set-

tlement of European migrants in that US destination (IEurope,d,τ/IEurope,τ). If this condition is

satisfied, the ancestry variable used to predict immigration in (5) is exogenous.8

Performance of the instrument. Table 2 shows the results from estimating various spec-

ifications of (4). The interaction of predicted ancestry (Âo,d,t−1)9 with national immigration

shocks (Ĩo,−r(d),t) predicts immigration flows post-1975 (Io,d,t) accurately: the R2 in column 1

without any controls is 65.6%. Importantly, the coefficients on the interaction between pre-

dicted ancestry and national immigration are virtually unchanged as we add more controls:

controlling for distance, latitude distance, country and county fixed effects in column 2; adding

14,031 country × census division and county × continent interacted fixed effects in column

3; controlling for the (endogenous) total flow of European migrants to the same county in

column 4; and controlling for the push-pull interaction that shapes immigration in column 5.

Appendix Figure 4 provides maps displaying these exogenous “immigration shocks” for each

five-year period from 1975 to 2010, Î·,d,t in (5), with substantial variation over time and space.

3 The Impact of Immigration on Innovation and Growth

In this section, we exploit our quasi-random immigration shocks to quantify the causal impact

of immigration on innovation and growth, and probe the robustness of our results.

8Exogeneity of ancestry is a sufficient, but generally not a necessary condition for the validity of the shift-
share approach (Goldsmith-Pinkham et al., 2020). See Borusyak, Hull, and Jaravel (2021) for necessary and
sufficient conditions for the validity of the shift-share instrument of Card (2001) and Bartik (1991).

9Appendix Figure 3 shows a binned scatter plot of predicted ancestry (Âo,d,2010) against actual ancestry
(Ao,d,2010), well-aligned along the 45-degree line.
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3.1 Immigration and Innovation

Table 3 shows our main results, a test of the hypothesis that immigration causes an increase

in innovation at the local level (US county), in the short run (five-year period). Our baseline

estimate for coefficient β in (1) is in panel B column 1. It measures the impact of an exogenous

inflow of immigrants to county d (in 1,000s) on the change in the number of patents per 100,000

residents filed over five years, where we instrument for immigration using our immigration

shocks (5). The estimated effect is positive and statistically significant (0.122, s.e.=0.045). It

implies that 10,000 additional immigrants to a county (close to one standard deviation, 12,000)

increases the flow of patents filed locally over a five-year period by 0.122 × 10 = 1.22 patents

per 100,000 people, from 4.61 patents (its mean) to 5.83, a 25% increase.

Panel A shows OLS estimates, panel B our IV estimates, and panel C estimates of the

first stage of our IV. Across specifications, our IV estimates are lower than OLS estimates

(though not statistically significantly different), suggesting that migrants endogenously sort into

destinations that experience an increase in innovation.10 Consistent with the presence of reverse

causality or country-county specific confounding factors, the OLS estimates are unstable as we

add more controls, state×time fixed effects in column 2, and county fixed effects in column 3.

By contrast, the IV estimates remain stable across specifications, even when controlling for

county fixed effects, so exploiting solely variation in the growth rate of innovation within-

county over time. This stability bolsters our confidence that our exogenous immigration shocks

are orthogonal to persistent confounding factors at the county-level. Our first stage has a strong

F-statistic (always above 85) and Anderson-Rubin Wald F-test (all p-values below 2%).

Finally, column 4 shows an alternative functional form, the elasticity of innovation to immi-

gration. Instead of estimating the impact of immigration on innovation in levels as in (1), we use

the inverse hyperbolic sine transformation, IHS, which approximates the logarithm function,

IHS (Patentsdt) = δt + δs(d) + βIHSIHS (Immigrationdt) + εtd, (7)

where we instrument for immigration using the same instrument (5) as in our baseline specifi-

cation. We find a large and significant elasticity of patenting to immigration shocks, β = 1.652

(s.e. = 0.150). We interpret this large positive impact of immigration on the flow of patenting

through the lens of a regional endogenous growth model in Section 4, and we quantify this

model targeting the well-identified reduced form elasticity βIHS.

10Note that the standard errors are lower in the IV specifications than in the OLS specification. This is
because we compute cluster-robust standard errors (Cameron and Miller, 2015).
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3.2 Immigration and Wage Growth

Table 4 tests the hypothesis that immigration causes an increase in local wages. Even if

immigration has a positive impact on innovation as documented above, the impact on wages is

theoretically ambiguous, as we show formally in Section 4. An inflow of immigrants increases

the local supply of labor, which depresses wages. At the same time, it induces a rise in local

innovation, which increases the marginal product of labor and pushes wages up. The net effect

of immigration on local wages in the short run thus remains an empirical question.

We show that immigration has a positive impact on local wages over a 5-year horizon at the

county level, controlling for state fixed effects (column 1) and county fixed effects (column 2).11

An influx of 10,000 adult migrants (close to one standard deviation, 7,000) increases wages per

capita by around 8% relative to the mean increase in our sample.12 This is not mechanically

driven by high-earning migrants, nor by a composition effect where low-earning natives may

leave in response to the arrival of migrants (Borjas, 2003): immigration induces an increase in

wages even when restricting our analysis to native non-movers (column 3).

3.3 Immigration and Wage Inequality

We next show that immigration shocks are intimately linked to the dynamics of wage inequality:

an immigration shock has a stronger positive impact on more educated native workers; and more

educated migrants contribute more to US innovation and wage growth.

High versus low education natives. Columns 4 to 8 in Table 4 estimate the impact of

an exogenous immigration shock on the change in wages separately for native non-movers

with different levels of education, from high-school dropouts (column 4) to a graduate degree

(column 8).13 The impact of immigration on the wage of native workers is monotonically

increasing with their level of education: the effect is nil for high school dropouts (column 4), and

increases by one order of magnitude going from a high school degree (column 5, β = 0.017, s.e. =

0.005) to a graduate degree (column 8, β = 0.247, s.e. = 0.085). The impact of immigration on

college graduates (column 7, β = 0.085, s.e. = 0.025) is roughly the same as the average impact

for the entire population of native non-movers (column 3, β = 0.108, s.e. = 0.034).

11For ease of interpretation, we use adult immigration (aged 25+) as the endogenous variable in all of our
regressions regarding wages and education.

12Potentially interesting for the interpretation of our results in the context of structural spatial growth models,
we find this positive effect of immigration on wages is higher in services (non-traded sector), with a coefficient
of 0.429 (s.e. 0.135), than in manufacturing (traded sector), with a coefficient of 0.211 (s.e. 0.046).

13We use a different horizon, 10 years instead of 5, and data from the US census instead of QCEW wage data.
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High versus low education migrants. The granularity of our identification strategy in

Section 2 also allows us to separately instrument for high versus low education migrants. To

do so, we exploit the fact that the level of education of migrants differs by origin country, and

by migration time. For example, Japanese immigrants have, on average, twice the number of

years of schooling as those from Guatemala, whereas the education levels of Mexican migrants

increased by about 30% during our sample period. We disaggregate our baseline instruments

in (5) at origin-destination-time level, Îo,d,t = β̂t · Âo,d,t−1× Ĩo,−r(d),t, for each of the top 20 origin

countries (those that send the most migrants), and generate a set of instruments for the number

of years of education embodied in the migration flow from each origin to each destination.14

The first stage for this additional endogenous variable is

Average Y ears Educationd,t × Immigrationd,t = δs(d) + δt +
20∑
o=1

κoÎo,d,t + νd,t.

Because migrants from different countries at different times have different schooling levels and

emigrate to different counties, we are able to isolate exogenous variation in the level of education

of migrants across destinations and time. For example, other things equal, an exogenous increase

of Japanese migrants to a destination induces an increase in the average education of migrants.

Table 5 panel A shows the positive impact of immigration on innovation increases with

the level of education of migrants. Column 1 replicates our standard specification for the age

25+ immigration sample, with a positive - now stronger than baseline - impact of immigration

on the growth of patenting per capita.15 Column 2 adds the interaction of immigration with

(demeaned) average years of schooling: more educated immigrants cause a larger increase in

innovation. 10,000 migrants of average education (about 11 years) cause 2.5 more local patents

per 100,000 residents to be filed in a 5-year period (10×0.254), while 10,000 migrants with one

standard deviation higher education (3.7 more years of schooling) cause 13 more local patents

14We restrict our analysis to immigrants age 25 or older, constructing the endogenous measure of immigration
at the county level for this subset of immigrants. We then interact this overall adult immigration flow with
the average schooling levels of adult migrants arriving in a given county at a given time from IPUMS, which
lists information on the number of years of schooling and the number of years of college education for each
respondent. See Appendix A.1 for details.

15In column 1 of Table 5 (both panels), we consider a specification with a single endogenous regressor and
multiple instruments, and therefore report the first-stage F-statistic developed in Montiel Olea and Pflueger
(2013). The remaining columns in this table report results for specifications with multiple endogenous variables
and multiple instruments and, to our knowledge, there is no comparable effective F-statistic in this case (Andrews
et al., 2018). To nevertheless gauge our ability to identify differential exogenous variation in the separate
endogenous variables, the table shows the F-Statistics from Montiel Olea and Pflueger (2013) after applying the
orthogonalization procedure in Angrist and Pischke (2009) to each endogenous variable. In Column 2 of both
panel A and B those F-statistics exceed the critical values for a 10% bias. In further columns the F-statistics
do not always exceed the critical values, indicating possibly weak instruments.
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to be filed (10 × (0.254 + 3.7 × 0.281)). Those effects are similar when controlling for county

fixed effects (column 3), or when measuring years of college instead of total years of education

(column 4). Column 5 uses a nonparametric measure: while the (positive) impact of migrants

in the bottom tercile of education on innovation is insignificant, the impact of those in the

top tercile is one order-of-magnitude larger than for immigrants with average education. The

effect for the middle tercile, while lower than that for the average migrants –about half– is

significantly positive. Our results are thus consistent with a large literature on the special role

of educated migrants (Kerr and Lincoln, 2010; Hunt and Gauthier-Loiselle, 2010; Akcigit et al.,

2017; Borjas and Doran, 2012; Moser et al., 2014; Bernstein et al., 2018), although we show

innovation is not exclusively attributable to this elite group.

Table 5 panel B shows similar results for wage growth. A county receiving 10,000 migrants

with average schooling would see average annual wages increase by $300 (in 2010 dollars) over

five years (10 × 0.298 × $100), while receiving 10,000 migrants with one standard deviation

higher education (3.7 more years of schooling) increases average annual wages by $1,200 over

five years (10× (0.298 + 3.7× 0.251)× $100). The effect for the top tercile of education is also

one order-of-magnitude larger than for migrants with average education. This heterogeneity

may partly explain the seemingly contradictory findings of the literature on the impact of

immigration on wages (Borjas, 2003; Cortes, 2008; Ottaviano and Peri, 2012; Foged and Peri,

2016; Dustmann et al., 2017; Monras, 2020; Jaeger et al., 2018; Bratsberg et al., 2019).

3.4 Robustness and Additional Findings

Below, we relate our approach to ongoing debates on the merits of the shift-share approach to

identification and show our results are robust to a large array of alternative specifications.

Randomization tests. Appendix Table 2 implements a randomization test developed by

Adão et al. (2019) to gauge whether our instrument suffers from an over-rejection problem

typical of shift-share designs:16 two US counties with similar pre-existing ancestry may also

16To clarify the comparison, the shifts are industry shocks in Adão et al. (2019) versus immigration shocks
in our case; the shares are employment shares in Adão et al. (2019) versus ancestry shares in our case; the
variation is at the sector-commuting zone level in Adão et al. (2019), versus country-county in our case.

To implement the procedure as in Adão et al. (2019), we replace ancestry in levels with ancestry shares.
Formally, using predicted ancestry Âo,d,t−1 from (2), equation (4) becomes

Io,d,t = δo,r(d) + δc(o),d + δt +X ′o,dθ + bt · [
Ão,d,t−1∑
d′ Ão,d′,t−1

× Ĩo,−r(d),t] + uo,d,t,

where the normalization Ão,d,t−1 = Âo,d,t−1 −min[0,mind′ [Âo,d′,t−1]] ensures predicted shares are in [0, 1].
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have similar exposure to other (unobservable) economic forces, leading to a dependency across

residuals not accounted for by conventional clustered standard errors. We randomly generate

immigration ‘shift’ shocks for each {o, r, t} country-region-time triplet and construct placebo in-

struments by interacting these random shocks with our predicted ancestry shares, and run 1,000

placebo regressions of actual immigration on our randomly generated instrument. Column 1

reports the fraction for which we reject the null hypothesis of no effect at the 5% statistical sig-

nificance threshold. We find a false rejection rate of 3.8% – close to the theoretical asymptotic

5% level, suggesting our inference based on conventional clustered standard errors is valid.

The remaining columns show that using predicted rather than realized ancestry to construct

our instruments is key. Column 2 uses realized past immigration shares as in Card (2001). The

false rejection rate of 27% is a sign of unreliable inference. Column 3 shows the same problematic

result, a false rejection rate of 25%, when using realized ancestry shares.17 The correlation

between local economic factors and ancestry shares invalidates inference with standard shift-

share instruments, but not with our predicted-ancestry instrument.

Realized versus predicted ancestry, state versus county aggregation. We explore in

Appendix Table 4 the difference in point estimates between using our instrument with predicted

ancestry shares (column 1) versus a conventional shift-share instrument with realized ancestry

shares (column 2). The estimated impact of immigration on innovation is similar using either

instrument, despite the fact that the conventional shift-share instrument suffers from over-

rejection (Appendix Table 2). The estimated impact of immigration on innovation is also

similar when we aggregate our data at the US State level as in Hunt and Gauthier-Loiselle

(2010), though the estimated standard error using our predicted ancestry instrument (column 3)

is again larger than with a conventional shift-share instrument (column 4).

Alternative Instruments. Appendix Table 5 panel A explores the robustness of our main

finding to alternative constructions of our instrument: column 1 replaces the push factor in (2),

the number of migrants from foreign origin o excluding those who settle in the region where

domestic county d is located, with the number of migrants from o excluding those who settle

in counties with migrations that are serially correlated with those to d;18 column 2 replaces the

pull factor in (2), the share of European migrants who settle in d, with the share of migrants

17Appendix Table 3 presents additional statistics from the randomization test of Adão et al. (2019).
18For each pair of counties, we compute the correlation coefficient over time of total immigration (from

all origin countries) and exclude from the push factor at t for county d all migrations to counties d′ if their
correlation with d is positive and statistically significant at the 5% level.
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from a continent different than o’s who settle in d; column 3 freezes predicted ancestry at

its 1975 level in the construction of our instrument in (5); and column 4 uses non-European

immigration until 1960 only to predict pre-existing ancestry. Our estimate for β varies little

across specifications. Panel B shows the same stability of the estimated impact of immigration

on innovation measured as an elasticity, βIHS, using the IHS-IHS specification in (7).

Additional robustness checks. Appendix Table 6 shows that our instrument separately

identifies significant variation in contemporaneous immigration, even when controlling for lagged

immigration shocks. It does so despite the high level of serial correlation in immigration (Jaeger

et al., 2018). This pattern is comforting for our identifying assumption and is also consistent

with our finding in Section 4 that our immigration shocks are not confounded by persistent pro-

ductivity shocks. Appendix Table 7 shows our results are robust to weighting by the citation

counts of patents to account for differences in patent quality. Appendix Table 8 shows a permu-

tation test, randomly reassigning the baseline instrument within various sets of observations.

Across all permutation tests, we find no effect of this permuted instrument on immigration, no

reduced-form impact of this permuted instrument on innovation, and the right hand side rejec-

tion rate is small (always below 5.2%). Appendix Table 9 shows results similar to our baseline

specification for the impact of population growth on innovation, using our immigration shocks

in (5) as an instrument for population growth. Appendix Table 10 shows our coefficient is

stable to including ‘bad controls’: population density in 1970, patents per capita in 1975, and

the share of high school or college educated in 1970. Appendix Table 11 shows our results are

not driven by individual origin countries. In panel A we repeat the exercise in Table 3 removing

one country at a time (for the 5 largest immigrant origin countries, Mexico, China, India, the

Philippines, and Vietnam). In panel B, we use only migrants from each one of those 5 countries.

The estimate for the impact of immigration on innovation varies little across samples.

Domestic versus Immigrant Innovators. Appendix Table 12 shows our results are not

mechanically driven by incoming immigrant inventors. We define an inventor who files a patent

in the US as “domestic” if their first patent is filed with a US address and as “immigrant” other-

wise. Doing so requires assigning patents to counties based on the location of inventors, rather

than assignees as in our baseline specification. Column 1 shows this alternative assignment

does not alter our baseline finding: our estimate of β in (1) is 0.098 (s.e.=0.038) compared to

0.122 (s.e.=0.045) in Table 3. Column 2 shows the vast majority of the effect of immigration on

innovation, about 80% (0.079/0.098), comes from domestic inventors. Columns 3 and 4 show
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immigrant inventors and mixed teams of domestic and immigrant inventors contribute the re-

maining shares of the overall effect (5% and 10% respectively). So while a prolific literature has

shown the crucial role foreign inventors play in US innovations (Akcigit et al., 2017; Arkolakis

et al., 2020; Bernstein et al., 2018; Borjas and Doran, 2012; Hunt and Gauthier-Loiselle, 2010;

Kerr and Lincoln, 2010; Khanna and Lee, 2018; Moser et al., 2014, 2021; Stuen et al., 2012), we

find the aggregate (county-level) response to immigration shocks primarily comes from domestic

innovators. Although the contribution of patent flows from immigrant and domestic-immigrant

inventor teams induced by immigration is large relative to their overall share of total US patents

(1% and 4%, respectively), it constitutes a small share of the aggregate response.19

This stylized fact motivates our modeling choice in Section 4, where the impact of immigra-

tion on innovation is driven by scale effects in the production of ideas, and where we abstract

from differentiation in foreign-born versus native inventors.

Spatial spillovers. Appendix Table 14 shows positive spatial spillovers of immigration on

innovation (panel A) and wage growth (panel B). We consider three concepts of geographic

spillovers, and construct distinct instruments for each: within-state spillovers; spillovers that

decay smoothly with distance;20 and immigration within 100km (60 miles), between 100km

and 250km (150 miles), between 250km and 500km (300 miles), and beyond 500km. In panel

A column 1, we first show that the effect of immigration on innovation is similar with state

fixed effects (0.122, s.e.=0.045, our baseline in Table 3) and census division fixed effect (0.137,

s.e.=0.048). Immigration within county d’s state, excluding d, has a positive impact on local in-

novation in d (column 2). Immigration to neighboring counties (inversely weighted by distance)

also has a positive impact (column 3). And a one standard deviation increase in immigration

within 100km of d doubles innovation in d relative to the mean; but immigration beyond 100km

has no impact (columns 4). We successfully identify independent variations in immigration at

each level of aggregation, one of the strengths of our identification method.21

The spatial spillovers for wage growth in panel B are similar.

Interestingly, we also show in Appendix Table 16 that immigration causes an inflow of

19In Appendix Table 13, we further limit to patents in which all domestic inventors have a patent filed in the
US prior to period t (column 3) and further to those with a prior patent in the same county (column 4). The
impact of immigration on patenting is similar whether we include innovators who move (column 3) or exclude
them (column 4), suggesting our results are not driven by an influx of domestic innovators.

20We sum immigration shocks to all counties other than d, inversely weighted by their great circle distances
from d computed from county centroids using the census mapping files for county geographies.

21Appendix Table 15 displays the corresponding first-stage regression results. For all specifications involv-
ing multiple endogenous variables, we use the Angrist and Pischke (2009, p. 217-218) first-stage F -statistic,
separately testing for each regressor the null of weak identification.
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natives (both whites and non-whites). This suggests that natives endogenously respond to the

anticipated positive impact of immigration on innovation and wages. Our structural model in

Section 4 features such endogenous internal migrations driven by expected wage differentials.

Dynamism. Appendix Table 17 shows immigration also increases dynamism –the job cre-

ation and destruction rates, and the skewness of the job growth rate across sectors– consistent

with endogenous growth theories with Schumpeterian creative destruction linked to innovation

(Aghion and Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004).

4 Structural Model and Estimation

We interpret our main finding that immigration shocks have a positive causal effect on local in-

novation and wages at the 5-year horizon through the lens of a quantitative regional equilibrium

model of endogenous growth and migrations.

4.1 Model

There are O countries and D counties. Upon arriving in the US, migrants form rational expec-

tations and endogenously select a destination to maximize their one-period ahead utility, just

as natives choose where to live. Time t is discrete, and corresponds to the five-year intervals in

our data. Each county produces a nationally traded final good (Y ) and patents/ideas (Q).

Goods production. The final good Yd,t, with price normalized to 1, is produced by a repre-

sentative firm in county d at time t with technology

Yd,t = Zd,tQd,tL
α
Y,d,t, (8)

where Qd,t is the number (stock) of patents/ideas used in production, LY,d,t is labor used for

production, and α ∈ (0, 1) is the elasticity of output to production labor. Zd,t is a stationary

exogenous total factor productivity shock and evolves according to lnZd,t = ρ lnZd,t−1 + εd,t,

with autocorrelation ρ ∈ (0, 1) and normally distributed innovations εd,t ∼ N (0, σ2
ε ).

Ideas production. The stock of patents/ideas in d evolves cumulatively, Qd,t = Qd,t−1 +Nd,t,

where Nd,t new patents are produced by combining research labor and existing patents,

Nd,t = LγN,d,tQ
1−γ
d,t−1. (9)
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LN,d,t is labor used for creating new patents, and γ ∈ (0, 1) is our key parameter: the elasticity

of innovation to research labor. Nd,t, the flow of new ideas, corresponds to the total number

of patents issued in d at t. The structure of the innovation production function in (9) places

our model within a broadly defined class of semi-endogenous growth models (Jones, 1995):

diminishing returns to past ideas in innovation require that the supply of researchers increases

over time to generate sustained growth. In this class of models, the supply of researchers, which

can shift through immigration shocks, is the key driver of innovation.

Firms. The markets for goods and patents are competitive, with price-taking firms. The final

goods firm in d combines new patents N and production labor LY to maximize profits,

max
N,LY

Zd,t (N +Qd,t−1)LαY −Wd,tLY − pd,tN, (10)

while the research firm optimally chooses research labor inputs LN to maximize

max
LN

pd,tL
γ
NQ

1−γ
d,t−1 −Wd,tLN . (11)

The local wage Wd,t and the price of a local patent pd,t, determined in equilibrium, are taken

as given by both types of firms. The research firm gains ownership of the patents it produces

for a single period. In the next period, patents expire and become a public good for other

firms in the county.22 This simplifying assumption ensures the research firm makes only static

decisions, increasing tractability despite the rich underlying growth dynamics.

Population and immigration. In each county d, a mass Ld,t of current residents each

supplies one unit of labor to their local labor market alone. The local labor force evolves as

foreign and domestic migrants arrive and leave, Ld,t+1 = (1−µ)Ld,t+
∑O

o=1 Io,d,t+
∑D

d′=1Md′,d,t,

where Io,d,t is the number of foreign immigrants from country o who settle in county d at time

t, and Md′,d,t is the number of domestic movers from d′ to d at t. Only a fraction µ of domestic

residents are given a chance to move any period, so the total gross outflow of domestic movers

from d′ is µLd,t. The total number of migrants from origin o to the US, Io·,,t =
∑D

d=1 Io,d,t,

grows at a rate n, Io·,,t = (1 + n)t exp (νo,t), subject to log-normally distributed exogenous

shocks, νo,t ∼ N (0, σν). These correspond to the origin-specific ‘push’ shocks in our empirical

analysis. Note the one-period “time to migrate,” which mimics the way we construct our data.

22We show in Section 3.4 that our results are similar if we allow patents to fully diffuse nationally.
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Upon their arrival in the US at t, migrant i from o forms rational expectations about wages

and ancestry compositions and settles in destination d where they derive the highest utility,

d = arg max
k

Et

[
W λ
k,t+1

(
Ao,k,t+1

Ao,·,t+1

)1−λ
]

exp (−τo,k,t) ηk,t (i) , (12)

where Wk,t+1 is the future wage in destination k, Ao,k,t+1/Ao,·,t+1 is the ancestry share from

origin o who will reside in k at t + 1 (with Ao,t+1 =
∑D

d=1Ao,d,t+1), ηk,t (i) are i.i.d. extreme-

value distributed preference shocks with dispersion parameter θ,23 and τo,k,t ∼ N (0, σ2
τ ) are

i.i.d. normal shocks to bilateral migration costs from o to k.

The stock of residents in d with ancestry from o evolves recursively as migrants and domestic

residents with ancestry from o arrive and leave, Ao,d,t+1 = (1− µ)Ao,d,t + Io,d,t +
∑D

d′=1 Mo,d′,d,t,

where Mo,d′,d,t are domestic residents with ancestry o who move from d′ to d at t (with Md′,d,t =∑
oMo,d′,d,t). Other things equal, migrant i is more likely to settle in d if they expect a high real

wage there (Wd,t)
24 and expect d to host a large community of common ancestry (Ao,d,t+1/Ao,·,t+1),

if the bilateral migration cost is low (τo,d,t), and if they draw a high taste shock (ηd,t (i)).

λ ∈ [0, 1] governs the relative importance of economic versus social factors in this decision.

Assuming a continuum of migrants, the share of migrants from o who chose destination d is

Io,d,t = Io,·,t

exp (−θτo,d,t)
(
Et
[
W λ
d,t+1

(
Ao,d,t+1

Ao,·,t+1

)1−λ
])θ

∑D
k=1 exp (−θτo,k,t)

(
Et
[
W λ
k,t+1

(
Ao,k,t+1

Ao,·,t+1

)1−λ
])θ . (13)

This expression intuitively links to our reduced-form migration model in Section 2. There is a

large inflow of migrants from o to d if (i) many migrants from o arrive in the US, Io,·,t large (a

‘push’ factor), (ii) d offers a high expected wage, Wd,t+1 high, (iii) the migration cost from o to

d is low, τo,d,t low (‘economic pull’ factors, potentially giving rise to the reverse causality and

county-country omitted factors concerns described above), and (iv) there is a large expected

group with ancestry from o in d, Ao,d,t+1/Ao,·,t+1 large (a ‘social pull’ factor as in Card, 2001).

Domestic resident j from d′ of ancestry o, when given an i.i.d. chance to move with proba-

bility µ, makes a similar internal migration decision, choosing optimally where to settle,

d = arg max
k

Et

[
W λ
k,t+1

(
Ao,k,t+1

Ao,·,t+1

)1−λ
]
η̃k,t (j) , (14)

23The idiosyncratic taste shocks are distributed Frechet, with Pr [ηk,t (i) ≤ η] = exp
(
−η−θ

)
,∀i, k, t.

24Given that goods are freely traded on a national US market, wages in units of the numeraire are real wages,
and directly comparable across locations.
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where η̃k,t (j) is again an i.i.d. extreme value distributed shock with dispersion parameter θ.

The number of residents with ancestry o who move from d′ to d at t is,25

Mo,d′,d,t = µAo,d′,t

(
Et
[
W λ
d,t+1

(
Ao,d,t+1

Ao,·,t+1

)1−λ
])θ

∑D
k=1

(
Et
[
W λ
k,t+1

(
Ao,k,t+1

Ao,·,t+1

)1−λ
])θ . (15)

Local labor is allocated to goods and new ideas production, Ld,t = LY,d,t +LN,d,t. Given our

convenient timing assumptions for patent ownership and migrations, migrants and residents

make no dynamic decisions, so we do not model household preferences further.

4.2 Equilibrium and Estimation

We characterize the deterministic balanced growth path equilibrium analytically and numeri-

cally solve for dynamics off the balanced growth path with each period equal to 5-year as in

our data. See Appendix B.1 for details and a formal definition of the equilibrium.

Equilibrium properties. Figure 1 displays theoretical impulse response functions to a tem-

porary, exogenous, inflow of migrants arriving in a given destination (top-left panel), for different

values of γ: our baseline estimate γ = 0.781 (solid line) and a lower value γ = 0.5 (dashed

line). In particular, the endogenous responses in Figure 1 depict deviations of local outcomes

from the steady state balanced growth path within any region d after a one standard deviation

positive shock νo,t to the supply of immigrants from any origin o, a shock which has symmetric

effects across our ex-ante homogeneous regions starting from the steady state.

The influx of migrants mechanically increases the local labor force (top-right panel). Due to

the cumulative impact of immigration, with past immigrant enclaves attracting future migrants,

and the sluggish nature of deterministic population growth, this increase is persistent. Those

additional workers expand the research sector, and patenting increases for multiple periods

(bottom-left panel). The key parameter governing the strength of the innovation response to

immigration is the local elasticity of innovation to research labor, γ. The smaller γ (dashed

versus solid lines), the weaker the impact of immigration on innovation. This motivates our

choice to use the reduced-form causal impact of immigration on innovation to identify γ.

Immigration has two competing effects on wages (bottom-right panel): on the one hand, the

increased abundance of local labor exerts a downward pressure on wages, a negative neo-classical

25Note that since we do not assume any county-specific internal migration frictions, all domestic migrants
make similar choices on average. The share of domestic migrants from origin county d′ of ancestry o who settle
in d is the same as for any other origin county d′′: Mo,d′,d,t/ (µAo,d′,t) = Mo,d′′,d,t/ (µAo,d′′,t) ,∀ (d′, d′′).
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labor-supply channel; on the other hand, higher local innovations increase the marginal product

of labor and wages, a positive endogenous-growth channel. At our estimated parameters (solid

line), the positive effect dominates at the 5-year horizon, consistent with our empirical results.

For lower values of γ (dashed line), wages initially decline due to the increased labor supply,

but eventually increase as innovations accumulate.

This simple intuition may explain the mixed results in the empirical labor literature on immi-

gration and wages (Borjas, 2003; Cortes, 2008; Ottaviano and Peri, 2012; Foged and Peri, 2016;

Dustmann et al., 2017; Monras, 2020; Jaeger et al., 2018; Bratsberg et al., 2019): whether the

negative neo-classical impact on wages of a labor supply increase, or the positive endogeneous-

growth effect dominates, depends on the size of local scale effects and the time horizon.26

Estimation results. We use a simulated method of moments (indirect inference) to estimate

the model. In addition to a range of conventional moments, including the volatility and persis-

tence of immigration, output, and patent flows, we target the IV estimate of the elasticity of

innovation to immigration, βIHS (column 4 in Table 3). We use the same identification strategy

to construct an instrument for immigration in our simulated model as in the data. In particular,

we first unconditionally simulate a panel dataset at the county level over T = 1, 000 periods

for O = 10 foreign regions and D = 9 domestic regions. Then we construct the variable Îd,t in

the simulated data and estimate specification (7) with IHS(Îd,t) as our instrument. Note that

(7) contains time effects, so our target IV coefficient βIHS is identified off of relative variation

across regions with different shock histories.

Table 6 presents results from our structural estimation, including point estimates, standard

errors, and the model’s fit.27 We match our target moments well (panel A). In particular, the

elasticity of innovation to immigration βIHS is close in our simulated model and in the data

(1.641 versus 1.652).28 Our structural estimate for the local elasticity of patenting to research

labor (γ = 0.781, s.e. = 0.086 in panel B) lies at the upper end of the range of values typically

26This intuition is complementary to Jaeger et al. (2018), where the gradual inflow of capital in response to
a labor shock plays a role similar to endogenous innovation in our model. The key qualitative difference is that
capital accumulation induces a temporary rise in real income and a subsequent decrease, while the innovation
response in our model yields permanent gains.

27We estimate 5 parameters (γ, ρ, σε, σν , στ ), targeting 6 moments (our IV coefficient βIHS , the s.d. of origin
immigration Io,·,t, the s.d. of destination immigration Id,t, the s.d. of origin-destination immigration Io,d,t,
the autocorrelation of output per capita, the autocorrelation of patenting). We set the population growth
rate to n = 2%, the labor elasticity in production α = 0.8 to match average markups of 20%, λθ = 0.5 from
Caliendo et al. (2019) with λ = 0.5 and θ = 1, and the 5-year mobility shock µ ≈ 0.25 to match the annual
county-to-county gross mobility rate of 5% within the US. Further technical details are in Appendix B.2.

28In Appendix Table 20 we provide a separate exhibit with our IV estimation of the target coefficient βIHS
from (7) using model simulated data.
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used in calibrated models of aggregate endogenous growth and firm innovation (Acemoglu et al.,

2018; Bloom et al., 2021; Akcigit et al., 2020; Blundell et al., 2002; Terry et al., 2020).

Table 6 also reports our estimates of other parameters, which are intuitive. We estimate

highly persistent local productivity processes with an annual autocorrelation of ρ1/5 = 0.971,

matching the high persistence of GDP and patenting at the local level. This high persistence of

local shocks represents a major threat to identification of conventional shift-share instruments,

even when they rely on ancestry or immigration shares from the distant past. We also estimate

that shocks to county-level productivity are less volatile (σε = 0.020) than shocks to origin-

level immigration flows (σν = 0.595) or bilateral immigration costs (στ = 0.520), matching the

relative volatilities of immigration at the county, origin, and county-origin levels.

The dynamics of innovation and wages. Figure 2 shows the elasticity of patenting to

research labor allows us to qualitatively match the untargeted dynamic response of both inno-

vation and wages to a local immigration shock at longer horizons. The top panel A shows the

impulse response of innovation and wages to a one period inflow of migrants in our model. The

bottom panel B shows the response of patenting and wages to an exogenous immigration shock

over different horizons (5-, 10-, and 15-year), controlling for intermediate immigration shocks.

The elasticity of wages to immigration is approximately equal to 0.13.29 In both model and

data, immigration has a positive and persistent impact on local innovation and wages, even

though we only target the contemporaneous response of innovation, and we do not target the

wage response at all.

4.3 Quantification of the Aggregate Impact of Immigration

We compute a simple aggregate counterfactual to gain intuition for the magnitudes involved.

We simulate the trajectory the US might have followed had the Immigration and Nationality

Act of 1965 (INA) not been passed. This act lifted many immigration restrictions. Comparing a

high realized migration path with the INA, to a counterfactual lower migration path without, we

offer suggestive evidence on the quantitative impact of immigration on innovation and growth.

To simulate the dynamics of the economy in a hypothetical world where the INA would not

have passed, we feed negative immigration shocks each period (ν ′s) such that the total popu-

lation growth rate is 16% lower than in our calibrated model. This 16% reduction is computed

to approximate the lower contribution of immigrants to US population growth over 1860-1960,

29Appendix Table 18 shows the corresponding estimation results.
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before the INA, compared to 1970-2010, after the INA (see Appendix B.3 for details).30

The resulting cumulative deviations of macroeconomic aggregates from the balanced growth

path are presented in Figure 3. The left panel shows the cumulative reduction in the labor

force. Our estimates suggest this counterfactual reduction in immigration would have caused a

sharp reduction in patenting per capita, reaching a 6% drop by 1990 (right panel, dotted line).

Interestingly, the impact on output per capita is close to zero until 1980, as the large stock of

patents inherited from the pre-INA period, and the reallocation of labor away from innovation

due to the reduction in immigration, allow for more goods production; eventually, as the stock

of innovation falls, output per capita falls by 5% by 2010 (right panel, solid blue line).

This estimated impact, about 5% lower output per capita over 45 years, lies within the

range of recent quantitative estimates in the endogenous growth literature. For example, the

recent decline in total US population growth contributes about 19% over 45 years (Peters and

Walsh, 2021), increased growth from trade generates 45-year gains of around 7% (Sampson,

2016), short-termist incentives on US managers cost around 2% over 45 years (Terry, 2023),

and stronger US antitrust policy generate 45-year gains of around 4% (Cavenaile et al., 2023).

The ratio of the cumulative population effects to cumulative output per capita effects, a bit

more than 2-to-1 in our analysis, also roughly matches a similar exercise in an earlier historical

period in Arkolakis et al. (2020).

4.4 Identification

Our structural model allows us to compare our reduced-form identification strategy (Section 2)

to the seminal identification strategy proposed by Card (2001), which predicts contemporaneous

immigration shocks by interacting immigration shifters with past immigration shares,

ÎCard·,d,t =
O∑
o=1

Io,·,t
Io,d,t−1

Io,·,t−1

. (16)

Applying our endogenous migration model (13) at time t − 1, we see that past immigration

shares Io,d,t−1/Io,·,t−1, and hence predicted immigration shocks in d themselves, ÎCard,d,t , are driven

by period t − 1 expectations of future wages and ancestry terms in destination d. But a posi-

tive productivity shock, an increase in Zd,t−1 in (8), increases not just contemporaneous wages,

Wd,t−1, but also expected future wages, Wd,t, because of the persistence in productivity. The

same reverse causality logic also applies to innovations: a positive productivity shock, Zd,t−1

30We do not claim to have quantified the causal impact of the INA on immigration. This exercise is solely
meant as an illustration of the quantitative magnitudes in our model. We use demographic data only to get a
plausible magnitude for reduced immigration in a hypothetical world without the INA.
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higher, attracts migrants and triggers innovations, which in turn increases future innovation

through the production function (9). The ‘Card instrument’ in (16) is thus contaminated by

the (simple) reverse causality effect of wages and innovation on immigration due to persistent

productivity shocks.31 Our identification strategy instead constructs a set of instruments for

ancestry, Î·,d,t =
∑O

o=1 b̂t[Âo,d,t−1 × Ĩo,leave−out,t] in (5), which isolate relative variations in pre-

dicted local ancestry that result exclusively from the coincidental timing of historical push and

pull factors – purging the effect of persistent productivity shocks from our immigration shocks.

Figure 4 (left panel) explicitly shows the correlation structure between productivity shocks

(Zd,t), realized immigration (I·,d,t), the ‘Card’ predicted immigration shock (ÎCard·,d,t ), and our pro-

posed predicted immigration shock (Î·,d,t). For reference, the figure also includes an intermediate

‘Ancestry’ version of our instrument ÎAnc·,d,t constructed by replacing predicted ancestry Âo,d,t−1

with realized ancestry. As expected, because productivity is persistent, realized immigration is

correlated with contemporaneous productivity shocks. The ‘Card’ instrument, because it relies

on past immigration shares, themselves correlated with persistent past productivity shocks, is

also correlated with contemporaneous productivity shocks. Using realized ancestry, the ‘Ances-

try’ instrument, alleviates this correlation somewhat but not fully. Our predicted immigration

shocks Î·,d,t, which exploit only the historically predicted, relative component of ancestry and

include a rich leave-out structure, are not correlated at all with local productivity shocks.

The right panel shows our identification strategy is also immune to the more elaborate iden-

tification concern regarding county-country specific omitted factors. If specific migrants (say

Indian engineers) have skills suited for certain industries and destinations (say IT in Silicon

Valley), then any shock to the cost of migration correlated with TFP (say τIndia,SantaClara,t

correlated with ZSantaClara,t) would induce a spurious correlation between innovation, immigra-

tion, and ancestry. Figure 4 (right panel) confirms that realized bilateral migration flows (Io,d,t),

‘Card’ predicted bilateral migration flows (ÎCardo,d,t ), and crude ‘Ancestry’ instruments’ predicted

migration flows (ÎAnco,d,t) are all correlated with the model’s underlying bilateral migration cost

shocks (τo,d,t). By contrast, our predicted migration flows (Îo,d,t) are not.

To summarize, within a quantitative model of endogenous growth and migration, our pre-

dicted immigration shocks are orthogonal to two variables that would raise endogeneity concerns

(persistent productivity and bilateral migration costs). This bolsters our confidence that our

identification strategy is well-suited to identify the causal impact of immigration on innovation.

31As noted earlier, David Card explicitly notes that past immigration shares may be correlated with persistent
productivity shocks (Card, 2001, p. 43), potentially creating a spurious correlation with contemporaneous wages.
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4.5 Robustness

We conclude with an exploration of the robustness of our results to various extensions.

Local versus global idea spillovers. In our baseline model, local innovations only depend

on local research labor and the local stock of ideas. Our empirical results suggest some degree

of spatial diffusion. Our results are robust to allowing for spatial spillovers: going to an ex-

treme case of full (national) spillovers in ideas after one period, the estimated local innovation

elasticity γ in Appendix Table 19 changes little and remains around 0.8. Intuitively, spillovers

affect the slow-moving stock of ideas, but have little impact on the short-run response of local

innovation to immigration shocks (see Appendix Figure 5). Spatial spillovers thus do not af-

fect our quantification of the aggregate response to a national symmetric immigration shock.

They affect instead the distribution of innovation and wage growth across regions in response

to asymmetric shocks, which we do not explicitly study here.32

Decreasing returns to labor. The parameter governing the degree of decreasing returns

to scale in production, α, has both a literal labor elasticity role as well as, in some alternative

interpretations of the model, a role in governing implied markups. In our baseline we choose

α = 1/1.2 ≈ 0.8 to match a 20% implied markup. Appendix Figure 6 shows that the impact

of an immigration shock is robust to alternative choices for α over the wide range 0.7 to 0.95.

The impact of an immigration shock on innovation remains strong in each case.

Constant versus decreasing returns in research. Our model is a semi-endogenous growth

model in the sense that per capita income growth is proportional to population growth in steady

state. In our baseline we chose a particular technology for the research sector with constant

returns to scale (Nd,t = LγN,d,tQ
1−γ
d,t−1) implying an elasticity of innovation to past ideas of

1 − γ ≈ 0.2. We explore alternative specifications for the production function of new ideas

(Nd,t = LγN,d,tQ
ζ
d,t−1 allowing γ+ ζ 6= 1), set ζ to 0.1 and 0.3, evenly spaced around our baseline

of ζ ≈ 0.2, and re-estimate the model in each case to recover γ. The estimated returns to scale

32Note that we employ an effective local idea aggregator in Appendix Subsection B.1 in our spillover speci-
fication of the model which is based on the average of idea stocks across all regions. So our impulse responses
starting from the balanced growth path in Appendix Figure 5 to an immigration supply shock νo,t which is
symmetric across regions differs little from the no spillover case. One could imagine that an alternative specifi-
cation with local idea aggregators based on the sum of idea stocks across regions might yield a larger response
in the spillovers version of the model. But such an alternative model would need to be calibrated to match the
same steady state balanced growth path per capita growth rates, which would quantitatively limit this force.
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to innovation, γ+ζ, are near unity in each specification.33 Appendix Figure 7 shows the impact

of an immigration shock across specifications. A higher elasticity ζ to the slow-moving idea

stock unsurprisingly results in stronger long-run impacts while dampening short-run impacts.

Over 45 years, the horizon of our INA analysis in Figure 3, the impact of immigration on

innovation is similar across specifications.

Conclusion

The economic, social, political, and cultural changes immigrants bring to their host communities

are the subject of fierce political controversies. Informing this debate with data has proven

difficult, not only because different migrants may affect their host communities in different

ways, but also due to an identification problem: immigrants likely choose to settle in host

communities that offer the best prospects rather than at random. This generates endogenous

correlations between past and present immigration, and local economic outcomes, making it

difficult to isolate the causal effects of immigration.

We introduce a novel solution to this identification problem that allows for the construction

of local immigration shocks – instruments for the total number of migrants arriving in each

US county for each five-year period since 1975. Importantly, these immigration shocks remain

valid even if migrations prior to 1975, and thus the county’s pre-existing ancestry composition,

are endogenous to local economic activity, and can be flexibly disaggregated into different

instruments for migrations from each origin country to each destination county in each period.

We use these instruments to show that, on average, immigration to the US between 1975

and 2010 had a positive causal effect on local innovation and average wages of natives. For

example, a 1% increase in immigration to a given county on average increases, over a five-year

period, the number of patents filed by local residents by 1.6% and local wages by 0.13%.

We interpret those empirical results through the lens of a structural model of endogenous

migrations and innovation. To quantify this structural model, we target the reduced form

impact of immigration on innovation. This quantification exercise suggests that the elasticity

of innovation with respect to research labor, 0.8, is relatively large, implying that labor supply

shocks such as those brought by international migrations have strong scale effects on local

innovation. This model also explicitly shows that while immigration unambiguously increases

innovation, its effect on local wages varies over time: in the very short run, it is possible for a

labor supply shock to depress wages, while the positive impact of higher innovation and labor

33We estimate γ̂ = 0.8250 when ζ = 0.1 and γ̂ = 0.6995 when ζ = 0.3.
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productivity on wages gradually builds over time and becomes dominant.

Beyond our application to immigration, we believe our approach linking pre-existing (an-

cestry) shares to the interaction of historical factors may prove useful in other applications of

the canonical shift-share instrument. For example, the cumulative forces that lead to the es-

tablishment of migrants of different ethnicities across locations may be similar to the historical

forces that generate variation in pre-existing shares of industries, occupations, and other spe-

cializations across locations. Our procedure for isolating quasi-random variation in pre-existing

shares may thus prove useful in other settings that have studied the local effects of import

competition, the local fiscal multiplier, local supply elasticities, and other important subjects.
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Table 1: Summary Statistics by County-Year

N Mean SD IQR

Immigration Flows and Population Change
Immigrationd,t 21,987 1.42 12.21 0.22
∆ Populationd,t 21,986 4.02 19.64 2.54

Immigration Shock (Îd,t) 21,987 -0.00 4.99 0.24
Patents
Patent Flows per 100,000 people 21,987 31.27 85.21 22.08
5-Year Difference in Patent Flows (PF) per 100,000 People (Assignee) 18,846 4.61 37.77 6.35
5-Year Difference in PF per 100,000 People (Assignee, Citation Weighted) 18,846 4.02 50.09 5.71
5-Year Difference in PF per 100,000 People (Inventor) 18,846 8.55 46.93 16.99
5-Year Difference in PF per 100,000 People (Inventor, Citation Weighted) 18,846 8.02 72.53 16.12
Wages
5-Year Difference in Average Annual Wage 21,977 18.93 56.52 25.80
10-Year Difference in Avg. Annual Wage of Native Non-Movers Aged 25+ (NNM) 6,274 15.00 30.81 37.84
10-Year Difference in Avg. Annual Wage of NNM with Less than High School 6,274 -6.36 36.51 41.75
10-Year Difference in Avg. Annual Wage of NNM with High School 6,274 -1.90 29.86 42.36
10-Year Difference in Avg. Annual Wage of NNM with Some College 6,274 7.54 32.60 43.81
10-Year Difference in Avg. Annual Wage of NNM with B.A. 6,274 22.46 48.31 58.26
10-Year Difference in Avg. Annual Wage of NNM with Graduate School 6,274 46.97 74.06 96.64
Immigration and Education
Immigrationd,t (Age 25+) 21,987 0.80 6.91 0.11
Average Years Colleged,t (Age 25+) 21,987 1.50 1.41 1.82
Average Years Educationd,t (Age 25+) 21,987 10.88 3.65 4.59
Spillovers
Immigrations(d),t 21,987 114.21 216.16 84.90
Neighbors’ Immigrationn(d),t (Inverse Distance Weight) 21,987 1.15 0.78 0.65
Immigration100km(d),t (other counties within 100km) 21,987 18.58 64.65 9.21
Immigration250km(d),t (other counties within 250km) 21,987 74.96 133.50 67.60
Immigration500km(d),t (other counties within 500km) 21,987 123.10 149.52 143.69

Notes: This table displays the number of observations, mean, standard deviation, and interquartile range for

all outcome variables considered, as well as the variables for immigration and the immigration instrument. The

first section of the table contains summary statistics for immigration (here we focus only on non-European

migration) and population growth in 1,000s of people. The second section lists summary statistics for patenting

and differences in patenting per 100,000 people. The third section reports summary statistics for wages ($100).

Finally, the fourth and fifth section provide summary statistics on the immigration variables used in the educa-

tion and spillovers analyses, respectively. Variables for immigration, population growth, and education are all

for five-year periods, as are the differenced outcomes except in the case of differences in average annual wage

for natives and native non-movers, which are over 10-year periods.
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Table 2: Regressions of Immigration on Push-Pull Instruments at the Country-County Level

Immigrationto,d

(1) (2) (3) (4) (5)

Âo,d,1975 × Ĩo,−r(d),1980 0.0036*** 0.0036*** 0.0035*** 0.0035*** 0.0035***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Âo,d,1980 × Ĩo,−r(d),1985 0.0016*** 0.0016*** 0.0016*** 0.0016*** 0.0016***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Âo,d,1985 × Ĩo,−r(d),1990 0.0018*** 0.0018*** 0.0018*** 0.0018*** 0.0018***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Âo,d,1990 × Ĩo,−r(d),1995 0.0005*** 0.0005*** 0.0005*** 0.0005*** 0.0005***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Âo,d,1995 × Ĩo,−r(d),2000 0.0004*** 0.0004*** 0.0004*** 0.0004*** 0.0004***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Âo,d,2000 × Ĩo,−r(d),2005 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Âo,d,2005 × Ĩo,−r(d),2010 0.0002*** 0.0002*** 0.0002*** 0.0002*** 0.0002***
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

IEuro,d,t 0.0109***
(0.0031)

I to,−r(d)
IEuro,d,t
IEuro,·,t

0.3913**

(0.1558)

N 3,583,881 3,583,881 3,583,881 3,583,881 3,583,881

R2 0.656 0.657 0.709 0.709 0.709

Distance No Yes Yes Yes Yes
Latitude Dis. No Yes Yes Yes Yes
Region-Country FE No No Yes Yes Yes
County-Continent FE No No Yes Yes Yes
Time FE No No Yes Yes Yes
Concurrent European Immigration No No No Yes No
Contemporaneous Push-Pull No No No No Yes

Notes: This table reports coefficient estimates for step 2 of our instrument construction, shown
in equation (4), at the country-county level. Interpretation: in column (1), Immigration1980

o,d

loads on Âo,d,1975 × Ĩo,d,1980 with a coefficient 0.0036 while Immigrationo,d,1985 loads on Âo,d,1980 ×
Ĩo,d,1985 with a coefficient 0.0016. Moving from column 1 to column 3 we introduce controls for
distance and latitude distance and then fixed effects into the regression specification. Column 4
adds contemporaneous European migration as a control while column 5 instead introduces the
contemporaneous push-economic pull factor for non-European migration. Standard errors are
clustered by country for all specifications and *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.
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Table 3: County-Level Panel Regressions of Difference in Patenting on Immigration

∆5yr Patent Flows Per Capita IHS(Patent Flows Per Capita)

(1) (2) (3) (4)

Panel A: OLS

Immigrationd,t 0.200** 0.194** 0.309
(0.096) (0.096) (0.197)

IHS(Immigrationd,t) 1.751***
(0.140)

N 18,846 18,840 18,846 21,987

R2 0.030 0.053 0.190 0.577

Panel B: IV

Immigrationd,t 0.122*** 0.115** 0.181**
(0.045) (0.045) (0.087)

IHS(Immigrationd,t) 1.652***
(0.150)

N 18,846 18,840 18,846 21,987

First Stage F-Stat 911 807 85 94

AR Wald F-Test p-value 0.014 0.021 0.013 0.000

Panel C: First Stage Immigrationtd IHS(Immigrationtd)

Immigration Shock (Îd,t) 2.119*** 2.124*** 1.610***
(0.070) (0.075) (0.175)

IHS(Îd,t) 0.792***
(0.081)

N 18,846 18,840 18,846 21,987

R2 0.762 0.766 0.956 0.541

Geography FE State State County State
Time FE Yes Yes Yes Yes
State-Time FE No Yes No No

Notes: Panels A and B of this table reports the OLS and IV results, respectively, of the
estimation of equation (1) where the dependent variable is the change in patenting per 100,000
people (population is based on baseline 1970 levels) in county d in the five-year period ending
in t and the endogenous variable is non-European immigration (1,000s) in d and period t in
columns 1 to 3; column 4 reports results for a comparable regression of the inverse-hyperbolic
sine (IHS) of patenting per 100,000 people on the IHS of non-European immigration (1,000s).
Panel C reports the results for step 3 of instrument construction, or the coefficient estimates for
the first-stage specification for non-European immigration (1,000s) for the instrument described
in equation (5). The table includes the first-stage F-statistic on the excluded instrument and the
p-value for the Anderson-Rubin Wald F test for each of the IV specifications. Standard errors
are clustered by state for all specifications, and *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.
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Table 5: Education Analysis

(1) (2) (3) (4) (5)

Panel A ∆5yr Patent Flows Per Capita

Immigrationd,t 0.212** 0.254*** 0.584 0.514***
(0.081) (0.082) (0.356) (0.128)

Average Years Educationd,t × Immigrationd,t 0.281*** 0.280**
(0.094) (0.128)

Average Years Colleged,t × Immigrationd,t 1.076***
(0.283)

1{Low Avg. Years Education} × Immigrationd,t -1.671
(5.620)

1{Medium Avg. Years Education} × Immigrationd,t 0.105*
(0.062)

1{High Avg. Years Education} × Immigrationd,t 1.705**
(0.830)

N 18,846 18,846 18,846 18,846 18,846

Montiel-Pflueger Effective F-Stat 39 38; 13 18; 15 19; 5 4; 37; 3

AR Wald F-Test p-value 0.000 0.000 0.000 0.000 0.000

Panel B ∆5yr Wages

Immigrationd,t 0.243** 0.298*** 0.761* 0.424***
(0.095) (0.058) (0.385) (0.093)

Average Years Educationd,t × Immigrationd,t 0.251*** 0.238**
(0.055) (0.097)

Average Years Colleged,t × Immigrationd,t 0.640***
(0.101)

1{Low Avg. Years Education} × Immigrationd,t -0.264
(0.259)

1{Medium Avg. Years Education} × Immigrationd,t 0.183***
(0.064)

1{High Avg. Years Education} × Immigrationd,t 1.637***
(0.360)

N 21,977 21,977 21,976 21,977 21,977

Montiel-Pflueger Effective F-Stat 42 39; 16 15; 18 19; 5 41; 29; 3

AR Wald F-Test p-value 0.000 0.000 0.000 0.000 0.000

Geogrpahy FE State State County State State
Time FE Yes Yes Yes Yes Yes

Notes: The table reports the results of our IV specification (1) for the change in patenting per 100,000
people (population is based on baseline 1970 levels) in Panel A and the 5-year difference in county-level
average real annual wages ($100s, at 2010 prices) in Panel B. Column 1 repeats our main specification but
adjusting the migrant pool to those aged 25+ (1,000s). Columns 2 and 3 then add a second endogenous
variable for the interaction of immigration with the (demeaned) average years of education of the migrants
arriving in the destination county, whereas column 4 adds (demeaned) average years of college education
of those migrants. Repeating the regression in column 2 of the second panel for the 10-year difference in
average annual wages ($100s, at 2010 prices) of native non-movers (US-born working individuals who have
not moved outside of the county within the past 5 years) on 10-year migration and corresponding education
results in coefficients of 0.249 (0.054) and 0.138 (0.036) on immigration and average years of education
times immigration, respectively. Column 5 uses as endogenous variables adult immigration interacted with
indicators for the terciles of average years of education of migrants across counties in period t. In all
specifications, for instrumentation, we exploit the fact that in our initial instrument construction we created
quasi-exogenous immigration shocks for each origin country-o × destination county-d pair in each time
period t; each specification utilizes the predicted immigration shocks for each of the the top 20 origin
nations as a joint set of instruments. For each regression we report the Montiel Olea and Pflueger (2013)
effective F -statistic. In regressions with multiple endogenous variables we use the orthogonalizaiton method
described in Angrist and Pischke (2009, p. 217-218). See the main text for details. We report the p-value
for the Anderson-Rubin Wald F test for each specification. Standard errors are clustered by state for all
specifications, and *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Parameters and Model Fit

Panel A: Moments Data Model

IV coeff., patentingd,t on immigration Id,t 1.6519 1.6410
(0.1500)

Std. deviation, o immigration Io,t 0.4061 0.3975
(0.0284)

Std. deviation d immigration Id,t 0.1794 0.1655
(0.0110)

Std. deviation, o-d immigration Io,d,t 0.0716 0.1138
(0.0117)

Autocorrelation, output per capita Yd,t/Ld,t 0.9611 0.9646
(0.0057)

Autocorrelation, patentingd,t 0.9309 0.8925
(0.0065)

Panel B: Estimated Parameters Symbol Value

Elasticity, patenting to labor γ 0.7807
(0.0857)

Autocorrelation, county TFP ρ 0.8631
(0.0230)

Std. deviation, county TFP shocks σε 0.0203
(0.0090)

Std. deviation, immigration push shocks σν 0.5951
(0.0793)

Std. deviation, bilateral immigration shocks στ 0.5200
(0.0707)

Notes: The top Panel A reports targeted data moments vs simu-
lated model moments. The bottom Panel B reports the estimated
parameters. The standard errors, in parentheses beneath moments
and estimates, are clustered by state.
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Figure 1: The Impact of an Immigration Shock

Notes: The figure plots impulse response functions to a one-standard deviation immigra-
tion shock in period 1. The top left plots the immigration shock νo,t. The top right plots
the labor force ld,t. The bottom left panel plots patenting nd,t. The bottom right panel
plots the response of the wage wd,t. The immigration shock is from a single origin o, and
the responses of the labor force, patenting, and the wage are local responses for a county
d. The labor force, patenting, and wage responses are in percentage point deviations from
the balanced growth path. The baseline impacts are in solid blue, while the lighter dashed
line lowers the parameter γ from its baseline of 0.781 to 0.5.
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Panel A: IRF Responses (Model)

Panel B: IV-Elasticities (Data)

Figure 2: Immigration, Innovation, and Wages: Model versus Data

Notes: Panel A plots model-estimated impulse response functions for patenting (left
figure) and wages (right figure) to a one-standard deviation immigration shock in period
1 (with dashed lines representing standard error boundaries associated with γ). Panel
B displays the results of estimating equation (1), where the endogenous variable is the
inverse hyperbolic (IHS) of non-European immigration (1,000s) to county d at time t
and the dependent variable is the IHS of 5-year patent flows per 100,000 people (left
figure) or IHS of wages (right figure). The figures plot the coefficient estimate and 95%
confidence intervals on the endogenous variable for separate regressions where the outcome
is measured in period t, t+1, and t+2 (for the latter two regressions, we include controls for
the immigration shock in t+1 and the immigration shocks in t+1 and t+2, respectively).
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Figure 3: Removing the Post-INA Immigration Increase

Notes: The figure plots the simulated counterfactual impact to US economic outcomes
from removing the increase in US population growth due to the foreign born empirically
observed after the Immigration and Nationality Act of 1965 (INA). Each panel plots
the percent deviation of the indicated outcomes from the path of the economy without
removal of the post-INA immigration contributions.
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Figure 4: TFP, Bilateral Shocks, and Instrumental Variables

Notes: The figure reports correlations in simulated model data linking observable out-
comes of interest to underlying model shock processes. In each panel, the observable data
is given by the inverse hyperbolic sine of total immigration I, the Card IV ÎCard, a ver-
sion of our baseline IV with realized rather than predicted ancestry shares ÎAnc, and our
baseline IV Î. The left panel reports correlations from data aggregated to the destination
county d by time t level with the log county-level TFP shock zd,t. The right panel reports
correlations from data disaggregated to the origin country o by destination county d by
time t level with (minus) the bilateral immigration shock -τo,d,t.
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A Data Appendix

A.1 Details on the construction of migration and ethnicity data

To construct county-level data on migration, ancestry, and ethnicity, we follow the approach
of Burchardi et al. (2019). We utilize data from each available wave of data from 1880 to
2010 from the Integrated Public Use Microdata Series (IPUMS) (Ruggles et al., 2018-2020).
Specifically, we use the 10% sample of the 1880 Census, the 5% sample of the 1900 Census, the
1% sample of the 1910 Census, the 1% sample of the 1920 Census, the 5% sample of the 1930
Census, 1% Form 1 Metro sample of the 1970 Census, 5% State sample of the 1980 Census, 5%
State sample of the 1990 Census, 5% sample of the 2000 Census, and the American Community
Service 5-Year sample of the 2010 Census. The following section summarizes this approach,
highlighting any difference in data construction made in this paper.

Construction of post-1880 immigration flows

We start the construction of our immigration variable by identifying the number of individuals
located in a given US geography d at the time of each census who immigrated to the US since
the prior census and were born in a historic origin country o (based on the detailed birthplace
variable). For each census wave, we then separate this immigration count into (roughly) five-
year periods based on the year in which each migrant arrived to the US. For the 1970, 1980,
and 1990 censuses, the exact year of arrival for immigrants is not provided, and instead the
year of arrival is provided in bins (e.g., a person who arrived in 1964 has a year of arrival
of 1960-1964). For these years, we use as our five-year periods the bins that are reported in
each census: 1925-34, 1935-44, 1945-49, 1950-54, 1955-59, 1960-64, 1965-70, 1970-74, 1975-80,
1980-84, and 1985-90. We then follow the approach outlined in Burchardi et al. (2019) to
transform foreign origin countries, given as birthplaces, to 1990 foreign countries and non-1990
counties and county groups into 1990 counties. Because some foreign birthplaces do not refer
to any modern (1990) country, we use population-based weights for transitioning birthplaces
to countries (for more details on the weighting scheme, see Burchardi et al. (2019)). We define
adult immigrants as those aged 25 years and older at the time of the census.
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Construction of pre-1880 immigration stock

From the 1880 census, we count all individuals who were born in a foreign origin country o and
reside in a historic US geography d, regardless of the date of arrival to the US. We then add to
this count all individuals residing in d who were born in the US but whose parents were born
in origin country o (if an individual’s parents were born in different countries, the individual
is assigned a count of one half for each parent’s origin country o). We then transform the
given birthplace to 1990 foreign countries and the pre-1880 US geography to 1990 US counties
following the transition method outlined in Burchardi et al. (2019).

Construction of ancestry stock

For the years 1980, 1990, 2000, and 2010, we take from the respective census all individuals in
a US county or county group that list as their primary ancestry a foreign nationality or area.
We then estimate the ancestry stock in each midyear (1975, 1985, 1995, and 2005) by taking
the individuals identified in each census year as belonging to a given ancestry and removing all
individuals who either were born or migrated to the US after the midyear. Ideally, we would
also remove all individuals who moved to the county after the midyear, but data is not available
for all census years; thus, for consistency, we do not remove these individuals. Again, we follow
Burchardi et al. (2019) in transforming ancestries to 1990 countries and US geographies to 1990
US counties. As with the data on foreign birthplaces, some ancestries do not correspond directly
to a modern (1990) country; again, we follow the weighting scheme outlined in Burchardi et al.
(2019) for transitioning stated ancestries to 1990 foreign countries.

Construction of education data for migrants

For the five-year migration periods from 1975 to 2010, whose construction is previously de-
scribed, we also identify the total number of years of education for each set of immigrants.
Specifically, we take the set of individuals that make up each five-year immigration flow and
limit to those individuals who are aged 25 years or older at the time of each respective census.
For each 1990 US county d, we then sum the number of years each individual is reported to have
over all immigrants in this set, assigning the midpoint when a range of years of education is
provided instead of an exact number of years. We then generate the average years of education
for immigrants to county d in each period t and demean these values. Finally, we take the
demeaned average years of education and multiply by the count of immigrants aged 25 or older
to generate the (demeaned) total years of education. We construct this variable for total years
of education as well as for years of college education.
We also utilize information on education from the census to construct county-level demographic
controls for the share of the county’s population that has a specified level of education in a
baseline year, 1970. Using data from the 1970 census, we calculate the share of all individuals,
regardless of birthplace, residing in a historic US county d who report having at least a Grade
12 education (share of high-school educated) and those who report having at least four years
of college education (share of college educated). These values are then transformed from 1970
US counties to 1990 US counties, again using the transition matrices described by Burchardi
et al. (2019).
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A.2 Construction of population data

For the period 1970 to 2010, we collect county-level population data in each census year and
intercensal year. The population counts for 2010 were taken directly from the US Census
Bureau (the American Community Survey 5-year estimates). All other population counts are
taken from the NBER (2018)’s Census U.S. Intercensal County Population Data, 1970-2014.
For each period, data are transformed from the given US counties to 1990 US counties using
the transition matrices described by Burchardi et al. (2019).

A.3 Construction of patenting data

We utilize data on corporate utility patents with a US assignee from the the US Patent and
Trademark Office (USPTO) microdata for the period 1975 to 2010 (USPTO, Accessed: Mar.
28-29, 2022). We translate the location of patents from assignee (or inventor) location to 1990
US counties by mapping the latitude and longitude coordinates onto a shapefile of 1990 counties
(obtained from IPUMS NHGIS (Manson et al., 2023)) to estimate the number of patents granted
to assignees in each county and year. For our main measure of patenting, we utilize unweighted
patent counts with locations based on assignee, but we also consider location based on inventors
and weighted patent counts as in Hall et al. (2001). We then construct a variable for the total
number of patents filed in each five-year period ending in t, for each measure of patenting, and
divide by the 1970 population (100,000 people) to get “per-capita patenting” in t. We then
winsorize the variables at the 1% and 99% levels. The main patenting outcome variable is then
the difference in this per-capita-patenting variable between t− 1 and t.

For the inventor-based measure of patenting, we also identify the subset of patents for which
all inventors are designated as natives (as opposed to immigrants). Because we do not have
information on inventor citizenship, we define native inventors as those whose first patent in
the USPTO dataset is filed in the US. This definition of native inventors may include patents
filed by foreign-born inventors if they first file a patent after moving to the US. Therefore, we
also construct the count of of patent flows for native inventors with a prior US patent that
further restricts the sample to patents filed in period t by only native inventors who have filed
another patent in the US prior to t. While this latter definition does not account for individuals
who are long-term foreign-born residents in the US that file their first patent at least 5 years
after moving, it does remove patents that may have been filed by recent immigrants (as well
as removing all patents by first-time native-born inventors or inventors whose previous patents
are not contained in the USPTO dataset). Finally, we apply a further restriction limiting the
set of patents to those for which all inventors have filed a patent prior to the current period
in the same US county (or at least one of the same counties if the inventor filed in multiple
locations in period t).

A.4 Construction of native wages data

We construct variables for native wages in each census year from 1980 to 2000 using data from
the 1980 5% State sample, 1990 5% State sample, and 2000 5% Census sample (Ruggles et al.,
2018-2020). In each year, we limit the sample to the pre-tax wage and salary income (incwage)
for individuals aged 25 and older who were born in the US and are employed (empstat is equal
to 1), referred to here as natives. We then further limit the sample to natives who report that
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they lived in the same county five years prior to the census year to identify wages of native
non-movers. Additionally, we subset the data based on the education level of the individuals
to estimate the wages of native non-movers with education levels of: less than high school,
high school, some college (1-3 years), 4 years of college, and 5 or more years of college. We
use the Consumer Price Index provided in IPUMS USA (CPI99) to adjust wages to a common
dollar year, 1999. We then follow the same method as that used in Burchardi et al. (2019)
to transform wages for county groups into 1990 US counties. Finally, we determine average
wages in each county using the person weight (PERWT) for the selected sample and generate a
variable for wage growth in each county that is the 10-year difference in average annual wages
for native non-movers.

A.5 Construction of business dynamism data

In this section, we explain the construction of variables used to measure business dynamism.
In each case, we take the five-year difference in the dynamism or wage variable.

Wages. The county-level average annual wage for every five years from 1975 to 2010 is taken
from the Quarterly Census of Employment and Wages (BLS, 2018). The data for each pe-
riod are then transformed from the US counties for that period to 1990 US counties using the
transition matrices developed in Burchardi et al. (2019) and then converted to 2010 US dol-
lars using the Personal Consumption Expenditures Price Index from the Bureau of Economic
Analysis (BEA, 2018). We generate this county-level average annual wage for all industries as
well as manufacturing (SIC 20-39 and NAICS 31-33) and services (SIC 60-67 and NAICS 52-53).

Growth Rate Skewness. The growth rate skewness variable for 2010 US counties for each
five years from 1995 to 2010 is estimated using data from the Longitudinal Business Database
(US Census Bureau, 2018b). We compute the Kelly Skewness of employment growth rates
across 4-digit sectors, and then transition this measure from 2010 to 1990 US counties.

Job Creation and Destruction Rates. Job creation and destruction data are taken from
the Business Dynamics Statistics (US Census Bureau, 2018a) for metropolitan statistical areas
(MSAs) and transitioned to 1990 US counties based on weights derived from 1990 population
data.

A.6 Construction of local output data

Local output data come from the BEA (2021)’s county-level GDP estimates for five-year pe-
riods for the available window from 2001 to 2019. These estimates are used to calculate the
autocorrelation of county-level output per capita, a target moment of the structural model
estimation.

A.7 Additional Tables and Figures
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Appendix Table 1: Assignment of States to Census Divisions (US Census Bureau, 2013)

Census Region State Names
New England Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont
Middle Atlantic New Jersey, New York, Pennsylvania
East North Central Illinois, Indiana, Michigan, Ohio, Wisconsin
West North Central Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, South Dakota
South Atlantic Delaware, District Of Columbia, Florida, Georgia, Maryland, North Carolina,

South Carolina, Virginia, West Virginia
East South Central Alabama, Kentucky, Mississippi, Tennessee
West South Central Arkansas, Louisiana, Oklahoma, Texas
Mountain Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming
Pacific Alaska, California, Hawaii, Oregon, Washington

Appendix Table 2: Robustness - Alternative Share-Based Instruments and Rejection Rates

∆5yr Patent Flows Per Capita

Specification: Predicted Ancestry Realized Immigration Realized Ancestry
Shares Shares Shares

(Baseline) (Card, 2001)

(1) (2) (3)

Adão et al. (2019) First Stage 3.8 27.4 24.5
False Rejection Rate (%) Overreject Overreject

Immigrationd,t 0.202∗∗ 0.161 0.163
(0.084) (0.075 ) (0.071 )

N 18846 18846 18846

First Stage F-Stat 656 695 361

Instrument Functional Form:
Instrumented Ancestry Yes No No
Push Factor Leave-Out Yes No No
Controls:
Geography FE State State State
Time FE Yes Yes Yes

Notes: This table displays the results of estimating equation (1), where the dependent variable is
the change in patenting per 100,000 people (population is based on baseline 1970 levels) and the
endogenous variable is non-European immigration (1,000s) to county d at time t. Column 1 uses our
baseline instrument but with predicted ancestry shares, as opposed to predicted ancestry in levels.
Column 2 is an instrument based on Card (2001) that utilizes realized immigration shares. Column
3 replaces the realized immigration shares in column 2 with realized ancestry shares. We report
the first-stage F -statistic on the excluded instrument for each specification. For each instrument,
we report the false rejection rate in the first-stage regression for a robustness test that follows the
method proposed by Adão et al. (2019). See Appendix Table 3 for details. Standard errors are
clustered by state for all specifications, and *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.
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Appendix Table 3: Results from Placebo Analysis Based on Adão et al (2019)

(1) (2) (3) (4)

Coefficient Standard Error Rejection
(Mean) (St. Dev.) (Median) Rate (%)

Panel A: Realized Immigration Shares (Card, 2001)

First Stage -0.0038 0.0703 0.0377 24.5
Reduced Form -0.0003 0.0182 0.0117 15.1

Panel B: Realized Ancestry Shares

First Stage -0.0040 0.0791 0.0398 27.4
Reduced Form -0.0004 0.0200 0.0128 14.9

Panel C: Predicted Ancestry Shares (Baseline Instrument)

First Stage -0.0016 0.0397 0.0249 3.8
Reduced Form 0.0004 0.0946 0.0801 9.1

Notes: Following Adão et al. (2019), we randomly generate immi-
gration shocks (for each {o, r, t} country-region-time triplet), and
construct placebo instruments by interacting these random shocks
with realized immigration shares (as in Card (2001)), realized an-
cestry shares, and our predicted baseline ancestry shares (as in the
ancestry-share version of our baseline instrument). We then run
1,000 placebo regressions of the endogenous immigration variabale
on the placebo variables for the Card (2001) instrument (Panel A),
the Card-style instrument that uses ancestry shares (Panel B), and
our ancestry-share instrument (Panel C); we also run the comparable
reduced-form regressions where the dependent variable is our primary
measure of patenting, the five-year difference in patenting flows per
100,000 people. Column 1 reports the mean value of the coefficient
over all placebo regressions, whereas column 2 reports the standard
deviation. Column 3 then reports the median standard error for the
coefficient of interest over all placebo regressions, and column 4 re-
ports the fraction of placebo regressions for which we reject the null
hypothesis of no effect at the 5% statistical significance threshold. As
shown, the traditional shift-share instrument suffers from the over-
rejection identified in Adão et al. (2019) with false rejection rates of
24.6% in the first stage and 13.6% in the reduced-form specification.
The ancestry-share version of our baseline instrument has false rejec-
tion rates of 4.7% (first stage) and 8.4% (reduced form). The latter is
similar to the false rejection rates reported in Adão et al. (2019) when
using their proposed standard error correction (labelled “AKM”).
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Appendix Table 4: Robustness - County Level vs. State Level Regressions

∆5yr Patent Flows Per Capita

County Level State Level
Predicted Ancestry Realized Ancestry Predicted Ancestry Realized Ancestry

Shares Shares Shares Shares
(1) (2) (3) (4)

Immigrationd,t 0.2021** 0.1626** 0.0005*** 0.0005***
(0.0841) (0.0713) (0.0002) (0.0001)

N 18,846 18,846 306 306

First Stage F-Stat 656 361 97 1,154
Geography FE State State Division Division
Time FE Yes Yes Yes Yes

Notes: This table displays the results of estimating equation (1), where the dependent variable is the
change in patenting per 100,000 people (population is based on baseline 1970 levels) and the endogenous
variable is non-European immigration (1,000s) to d in t. Columns 1 and 3 use our baseline instrument
but with predicted ancestry shares, as opposed to predicted ancestry in levels, and columns 2 and 4
use the comparable instrument but with realized ancestry shares. Columns 1 and 2 report a county
level analysis while columns 3 and 4 repeat each regression at the state level. We report the first-stage
F -statistic on the excluded instrument and the p-value for the Anderson-Rubin Wald F test for each
specification. Standard errors are clustered by state for all specifications, and *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Appendix Table 5: Robustness - Alternative Instruments for Immigration

Alternative Instrument Constructions
Leave-Out Leave-Out Ancestry in Stop Push-Pull

Correlated Counties Own Continent 1975 only in 1960

(1) (2) (3) (4)

Panel A ∆5yr Patent Flows Per Capita

Immigrationd,t 0.096*** 0.122*** 0.111*** 0.101***
(0.035) (0.045) (0.040) (0.038)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 127 828 1,171 1,750

AR Wald F-Test p-value 0.002 0.016 0.011 0.012

Panel B IHS of Patent Flows Per Capita

IHS(Immigrationd,t) 1.672*** 1.649*** 1.644*** 1.725***
(0.178) (0.159) (0.148) (0.161)

N 21,987 21,987 21,987 21,987

First Stage F-Stat 63 56 109 54

AR Wald F-Test p-value 0.000 0.000 0.000 0.000

Geography FE State State State State
Time FE Yes Yes Yes Yes

Notes: Panel A of this table displays the results of estimating equation (1), where the dependent
variable is the change in patenting per 100,000 people (population is based on baseline 1970 levels)
and the endogenous variable is non-European immigration (1,000s) to d in t; Panel B reports the
comparable regression where the dependent variable is the IHS of patenting per 100,000 people
and the endogenous variable is the IHS of non-European immigration (1,000s). Column 1 takes
the sum over push-pull interaction up to the year 1960 only in Step 1 to create an instrument for
ancestry. Column 2 replaces predicted ancestry in t − 1 with predicted ancestry in 1975 for all
periods. Column 3 uses an alternative leave-out strategy in Step 1: the push factor excludes all
destination counties whose overall time series of immigration flows are correlated with those of d
(as opposed to excluding counties in the same census division (r(d)) as d). Column 4 replaces the
economic pull factor in Step 1 with the share of all migrants who settle in d but excluding migrants
from the same continent as o (instead of using only European migrants). We report the first-stage
F -statistic on the excluded instrument and the p-value for the Anderson-Rubin Wald F test for
each specification. Standard errors are clustered by state for all specifications, and *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Appendix Table 6: Robustness - First Stage Controlling for Lagged Immigration Shocks

Immigrationd,t

(1) (2)

ImmigrationShockd,t 1.580*** 1.623***
(0.196) (0.222)

ImmigrationShockd,t−1 -0.064
(0.232)

N 21,987 18,846

R2 0.495 0.572

Geography FE County County
Time FE Yes Yes

Notes: This table reports the results for the
coefficient estimates for the first-stage specifica-
tion for non-European immigration (1,000s) for
the instrument described in equation (5). Col-
umn 1 provides our baseline first stage regres-
sion with county and time fixed effects while
column 2 adds the lagged immigration shock
as a control. Standard errors are clustered by
state for all specifications, and *, **, and ***
denote statistical significance at the 10%, 5%,
and 1% levels, respectively.
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Appendix Table 7: Panel Regression of 5-Year Difference in Patenting per 100,000 People on
Immigration using Alternative Patent Counts

∆5yr Patent Flows Per Capita

Assignee Assignee Inventors Inventors
(Unweighted) (Cite Weight) (Unweighted) (Cite Weight)

(1) (2) (3) (4)

Immigrationd,t 0.122*** 0.150*** 0.085** 0.137***
(0.045) (0.050) (0.037) (0.045)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 911 911 911 911

AR Wald F-Test p-value 0.014 0.008 0.037 0.007

Geography FE State State State State
Time FE Yes Yes Yes Yes

Notes: This table reports the results of our second-stage specification, described in equa-
tion (1), for the change in patenting per 100,000 people (population is based on baseline
1970 levels) with non-European immigration (1,000s) to d in t as the endogenous variable.
Column 1 repeats our main specification where patent location is based on assignees and
raw patent counts are used. Column 2 also uses the assignee for patent location but uses
citation-weighted patent counts. Columns 3 and 4 then provide results when inventors
are used for identifying patent location where patent counts are unweighted and citation-
weighted, respectively. We report the first-stage F -statistic on the excluded instrument and
the p-value for the Anderson-Rubin Wald F test for each specification. Standard errors are
clustered by state for all specifications, and *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.
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Appendix Table 8: Permutation Tests for Main Specification

(1) (2) (3) (4)

Coefficient Standard Error RHS Rejection
(Mean) (St. Dev.) (Mean) Rate (%)

Panel A: First Stage

Placebo 1 0.0007 0.018 0.008 0.40
Placebo 2 -0.0006 0.013 0.008 0.10
Placebo 3 -0.0127 0.031 0.021 1.90

Panel B: Reduced Form

Placebo 1 0.0035 0.054 0.041 1.30
Placebo 2 0.0009 0.049 0.037 1.50
Placebo 3 0.0034 0.069 0.045 5.20

Notes: This table reports the results of three different placebo tests
on our standard specification, corresponding to column 2 of Table 3.
For each of the placebo tests, we randomly reassign the instrument
across observations: in the first version, we randomly reassign within
the entire sample (Placebo 1); in the second version, we randomly
reassign within the same period t (Placebo 2); and in the third ver-
sion, we reassign within the same period t and census division r(d)
(Placebo 3). For each version, we perform 1000 placebo runs. We
present summary statistics on the first stage (Panel A) and reduced
form (Panel B) coefficients of interest across placebo runs. Columns 1
and 2 report the average and standard deviation for the coefficient of
interest, column 3 reports the mean standard errors, and columns 4
reports the percentage of runs for which we reject that the coefficient
of interest is different from 0 at the 5% level on the right-hand side.
The standard errors are clustered by state in our standard specifica-
tion and hence all placebo runs.
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Appendix Table 9: County-Level Panel Regressions of Difference in Patenting on Population
Growth

∆5yr Patent Flows Per Capita

(1) (2) (3)

Panel A: OLS

∆ Populationd,t 0.281*** 0.279*** 0.157*
(0.086) (0.087) (0.079)

N 18,846 18,840 18,846

R2 0.046 0.068 0.190

Panel B: IV

∆ Populationd,t 0.136*** 0.130*** 0.140**
(0.044) (0.045) (0.069)

N 18,846 18,840 18,846

First Stage F-Stat 110 103 63

AR Wald F-Test p-value 0.014 0.021 0.013

Panel C: First Stage ∆ Populationd,t

Immigration Shock (Îd,t) 1.897*** 1.888*** 2.081***
(0.181) (0.186) (0.263)

N 18,846 18,840 18,846

R2 0.324 0.340 0.804

Geography FE State State County
Time FE Yes Yes Yes
State-Time FE No Yes No

Notes: Panels A and B of this table report the OLS and IV
results, respectively, of the estimation of equation (1) where
the dependent variable is the change in patenting per 100,000
people (population is based on baseline 1970 levels) in county
d in the five-year period ending in t and the endogenous vari-
able is population growth (1,000s) in d and period t. Panel
C reports the results for step 3 of instrument construction,
or the coefficient estimates for the first-stage specification for
population change (1,000s) for the instrument described in
equation (5). The table includes the first-stage F-statistic on
the excluded instrument and the p-value for the Anderson-
Rubin Wald F test for each of the IV specifications. Standard
errors are clustered by state for all specifications, and *, **,
and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.
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Appendix Table 10: Robustness - Additional Controls from Baseline Year (1970)

∆5yr Patent Flows Per Capita

(1) (2) (3) (4) (5)

Immigrationd,t 0.122*** 0.125** 0.125*** 0.106** 0.090**
(0.045) (0.048) (0.045) (0.040) (0.036)

Population Density (1970) -0.001
(0.001)

Patents per 1,000 People (1975) -3.377
(2.313)

Share High School Education (1970) 51.754***
(10.185)

Share 4+ Years College (1970) 178.858***
(25.374)

N 18,846 18,840 18,840 18,846 18,846

First Stage F-Stat 911 2,062 920 945 1,017

AR Wald F-Test p-value 0.014 0.016 0.014 0.018 0.021

Geography FE State State State State State
Time FE Yes Yes Yes Yes Yes

Notes: This table reports the results of our IV specification, described in equation (1), where
the dependent variable is the change in patenting per 100,000 people (population is based on
baseline 1970 levels) and the endogenous variable is non-European immigration (1,000s) to d in
t. Column 1 repeats our main specification, whereas columns 2-5 add as a control county d’s
population density in 1970, patents filed in 1975 per 1,000 people (1970 population is used to
match the dependent variable), share of high school educated, and share of the population with
4+ years of college, respectively. We report the first-stage F -statistic on the excluded instrument
and the p-value for the Anderson-Rubin Wald F test for each specification. Standard errors are
clustered by state for all specifications, and *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.
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Appendix Table 11: Robustness - Alternative Samples

∆5yr Patent Flows Per Capita

Mexico China India Philippines Vietnam

(1) (2) (3) (4) (5)

Panel A: Excluding Given Country

Immigrationd,t 0.091*** 0.123*** 0.122*** 0.122*** 0.122***
(0.028) (0.046) (0.045) (0.044) (0.045)

N 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 666 1,576 1,267 1,261 1,179

AR Wald F-Test p-value 0.003 0.015 0.014 0.014 0.014

Panel B: Including Only Given Country

Immigrationd,t 0.125*** 0.089*** 0.145*** 0.140** 0.125*
(0.047) (0.028) (0.039) (0.054) (0.069)

N 18,846 18,846 18,846 18,846 18,846

First Stage F-Stat 2,094 535 318 22 2

AR Wald F-Test p-value 0.015 0.003 0.001 0.000 0.148

Geography FE State State State State State
Time FE Yes Yes Yes Yes Yes

Notes: This table reports the results of our IV specification, described in equation (1),
run on alternative samples where the dependent variable is the change in patenting
per 100,000 people (population is based on baseline 1970 levels) and the endogenous
variable is non-European immigration (1,000s) to d in t. In instrument construction,
each column either drops migrants from the given country (Panel A) or drops all other
migrants except those from the specified country (Panel B) from the sum in equation
(5) for each of the five largest sending countries post 1975 (Mexico, China, India,
Philippines, and Vietnam). We report the first-stage F -statistic on the excluded
instrument and the p-value for the Anderson-Rubin Wald F test for each specification,
and note the instrument constructed using only migrants from Vietnam does not
significantly predict non-European immigration. Standard errors are clustered by
state for all specifications, and *, **, and *** denote statistical significance at the
10%, 5%, and 1% levels, respectively.
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Appendix Table 12: Mechanisms: Patents by Inventor Type

∆5yr Patent Flows Per Capita

Teams of Domestic
All Domestic Immigrant & Immigrant

Inventors Inventors Inventors Inventors

(1) (2) (3) (4)

Immigrationd,t 0.085** 0.069** 0.003*** 0.009**
(0.037) (0.030) (0.001) (0.004)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 911 911 911 911

AR Wald F-Test p-value 0.037 0.038 0.004 0.027

Geography FE State State State State
Time FE Yes Yes Yes Yes

Notes: This table reports the results of our IV specification, described in equation
(1), for changes in patenting per 100,000 people with non-European immigration to
d in t as the endogenous variable. Column 1 uses our baseline patenting variable
but with a patent’s county designated based on inventor location (as opposed to as-
signee location). Column 2 repeats this specification but limits to patents with only
domestic inventors, defined as those whose first patent was filed in the US (92% of
all patents). Column 3 limits patents in the dependent variable to those with only
immigrant inventors, defined as those whose first patent was filed abroad and have
at least one patent in the US (1% of all patents). Finally, Column 4 limits patents
in the dependent variable to only those with domestic and immigrant inventor teams
(4% of all patents). Patents with at least one foreign inventor, defined as those with
all patents filed abroad, make up the remaining 3% of all patents. We report the
first-stage F -statistic on the excluded instrument and the p-value for the Anderson-
Rubin Wald F test for each specification. Standard errors are clustered by state for all
specifications, and *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.
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Appendix Table 13: Mechanisms: Domestic Non-Mover Innovators

∆5yr Patent Flows Per Capita

Only Domestic
Only Domestic Inventors with

All Only Domestic Inventors with Prior US Patent
Inventors Inventors Prior US Patent in Same County

(1) (2) (3) (4)

Immigrationd,t 0.085** 0.069** 0.040** 0.033**
(0.037) (0.030) (0.018) (0.014)

N 18,846 18,846 18,846 18,846

First Stage F-Stat 911 911 911 911

AR Wald F-Test p-value 0.037 0.038 0.037 0.032

Geography FE State State State State
Time FE Yes Yes Yes Yes

Notes: This table reports the results of our IV specification, described in equation (1), for
changes in patenting per 100,000 people with non-European immigration to d in t as the en-
dogenous variable. Column 1 uses our baseline patenting variable but with a patent’s county
designated based on inventor location (as opposed to assignee location). Column 2 repeats this
specification but limits to patents with only domestic inventors, or inventors whose first patent
was filed in the US (92% of all patents). Column 3 further limits patents in the dependent
variable to those with only domestic inventors who have filed at least one patent in the US
prior to the current period (40% of all patents). Finally, Column 4 further limits patents in
the dependent variable to those with only domestic inventors who have filed at least one patent
prior to the current period in the same US county or at least one of the same counties in the case
that they file in multiple locations in period t (32% of all patents). We report the first-stage
F -statistic on the excluded instrument and the p-value for the Anderson-Rubin Wald F test for
each specification. Standard errors are clustered by state for all specifications, and *, **, and
*** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Appendix Table 14: Spillovers Analysis

(1) (2) (3) (4)

Panel A ∆5yr Patent Flows Per Capita

Immigrationd,t 0.137*** 0.124*** 0.076* 0.076
(0.048) (0.045) (0.044) (0.048)

Immigrations(d),t 0.007***
(0.002)

Neighbors’ Immigrationn(d),t (Inverse Distance Weight) 6.916***
(2.061)

Immigration100km(d),t 0.077***
(0.026)

Immigration250km(d),t 0.005
(0.005)

Immigration500km(d),t 0.004
(0.004)

N 18,846 18,846 18,846 18,846

First Stage F-Stat (first coefficient) 876 1,129 2,175 6,065

First Stage F-Stat (second coefficient) 807 162 383

First Stage F-Stat (third coefficient) 150

First Stage F-Stat (fourth coefficient) 66

AR Wald F-Test p-value 0.011 0.000 0.000 0.000

Panel B ∆5yr Wages

Immigrationd,t 0.178*** 0.180*** 0.094*** 0.105***
(0.036) (0.051) (0.022) (0.033)

Immigrations(d),t -0.001
(0.014)

Neighbors’ Immigrationn(d),t (Inverse Distance Weight) 9.924***
(3.309)

Immigration100km(d),t 0.104***
(0.038)

Immigration250km(d),t -0.012
(0.020)

Immigration500km(d),t -0.004
(0.016)

N 21,977 21,977 21,977 21,977

First Stage F-Stat (first coefficient) 872 881 3,065 7,031

First Stage F-Stat (second coefficient) 840 175 437

First Stage F-Stat (third coefficient) 160

First Stage F-Stat (fourth coefficient) 66

AR Wald F-Test p-value 0.000 0.000 0.000 0.000

Geography FE Division Division Division Division
Time FE Yes Yes Yes Yes

Notes: This table reports the results of our IV specification (1) for the change in patenting per
100,000 people (population is based on baseline 1970 levels) (Panel A) and the change in the real
average annual wage ($100s, at 2010 prices) (Panel B) with non-European immigration (Panel A)
and immigration limited to those aged 25+ (Panel B) (1,000s) to d in t as the endogenous variable.
The first column repeats our baseline specification but with census division fixed effects. Column 2
adds as a second endogenous variable: total non-European immigration to the state in which d is
located, excluding own-immigration to d, in period t and a comparable instrument. Column 3 adds as
a second endogenous variable the inverse-distance-weighted sum of non-European immigration to all
counties in the US, excluding own-immigration, and an instrument constructed analogously. Column
4 includes variables, and appropriate instruments, for non-European immigration to counties within
100km (excluding d), 100km to 250km, and 250km to 500km of county d. For each specification we
report the first-stage F -statistic(s), utilizing the F -statistic described in Angrist and Pischke (2009, p.
217-218) in the case of multiple endogenous variables. We report the p-value for the Anderson-Rubin
Wald F test for each specification. Standard errors are clustered by state for all specifications, and *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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(Î

2
5
0
k
m

(d
),
t)

0.
00

6
-0

.0
47

2.
62

3*
**

-0
.6

17
*

(0
.0

11
)

(0
.0

95
)

(0
.3

87
)

(0
.3

15
)

Im
m

ig
ra

ti
on

S
h

o
ck

50
0k

m
(Î
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Appendix Table 16: Panel Regressions of Inflows of Native Migrants on Non-European Immi-
gration

Inflows of Internal Migrants
All Non-Hispanic

Natives White Natives

(1) (2)

Immigrationd,t 3.675*** 2.100***
(0.616) (0.406)

N 9,415 9,415

First Stage F-Stat 3,484 3,484

AR Wald F-Test p-value 0.000 0.000

Geography FE State State
Time FE Yes Yes

Notes: This table reports the results of our second-stage
specification, described in equation (1), for the migration
of natives (1,000s) into county d in period t (for 1980,
1990, and 2000) with non-European immigration (1,000s)
to d in t as the endogenous variable. Note, migrants who
moved into county d from a foreign country are excluded.
We report the first-stage F -statistic on the excluded in-
strument and the p-value for the Anderson-Rubin Wald F
test for each specification. Standard errors are clustered
by state for all specifications and *,**, and *** denote
statistical significance at the 10%, 5%, and 1% levels, re-
spectively.
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Appendix Table 17: Immigration and Economic Dynamism

∆5yr Job ∆5yr Job ∆5yr Job Growth
Creation Rate Destruction Rate Rate Skewness

(1) (2) (3)

Immigrationd,t 0.176*** 0.152*** 0.019***
(0.033) (0.035) (0.004)

N 6,588 6,588 12,560

First Stage F-Stat 951 951 151

AR Wald F-Test p-value 0.000 0.000 0.000

Geography FE State State State
Time FE Yes Yes Yes

Notes: This table reports the results of our IV specification, described in equation
(1), for each of our dependent variables with non-European immigration (1,000s)
to d in t as the endogenous variable. Columns 1 and 2 report the results with the
job creation rate and job destruction rate as the dependent variable, respectively.
Column 3 then provides results for job growth rate skewness as the dependent
variable. We report the first-stage F -statistic on the excluded instrument and the
p-value for the Anderson-Rubin Wald F test for each specification. Standard errors
are clustered by state for all specifications, and *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.
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Appendix Table 18: Time Path of Innovation and Wage Elasticities

IHS(Yd,t) IHS(Yd,t+1) IHS(Yd,t+2)

(1) (2) (3)

Panel A: Patent Flows

IHS(Immigrationd,t) 1.616*** 1.712*** 1.700***
(0.156) (0.274) (0.351)

N 15,705 15,705 15,705

First Stage F-Stat 109 31 15

AR Wald F-Test p-value 0.000 0.000 0.001

Panel B: Wages

IHS(Immigrationd,t) 0.128*** 0.151*** 0.191*
(0.016) (0.050) (0.099)

N 15,695 15,695 15,695

First Stage F-Stat 152 26 11

AR Wald F-Test p-value 0.000 0.004 0.158

Geography FE State State State
Time FE Yes Yes Yes

Notes: This table displays the results of estimating equation (1),
where the dependent variable is the inverse hyperbolic sine (IHS)
of patents (Panel A) or IHS of wages (Panel B) and the endoge-
nous variable is the IHS of non-European immigration (1,000s) to
d in t. Columns 1 through 3 report regression results where the
outcome is measured in period t, t + 1, and t + 2, respectively;
for the regressions in columns 2 and 3 we include controls for the
immigration shock in t + 1 and the immigration shocks in t + 1
and t + 2, respectively. We report the first-stage F -statistic on
the excluded instrument and the p-value for the Anderson-Rubin
Wald F test for each specification. Standard errors are clustered
by state for all specifications, and *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.
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Mexico

China

India

Philippines

Vietnam

Appendix Figure 1: Share Non-European Immigrants to the US by Origin
Country

Notes: This figure plots the share of non-European immigration into the US from the 5
non-European origin nations with the largest cumulative immigration to the US: Mexico,
China, India, Philippines, and Vietnam. The figure highlights variation in the push factor,
showing how the number of migrants from a given origin country o varies over time.

Appendix - Page 22



Pre 1880
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2001 - 2005

1881 - 1885

1901 - 1905

1921 - 1925

1945 - 1949

1965 - 1970

1985 - 1990

2006 - 2010

1886 - 1890

1906 - 1910

1926 -1930
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1891 - 1895

1911-1915

1925 -1934

1955 - 1959

1975 - 1980

1996 - 2000

Appendix Figure 2: Destinations of European Immigrants to the US

Notes: This figure maps immigration flows into US counties by 5-year periods (except
between 1930 and 1950). We regress the number of European immigrants into US county d
at time t, Id,t, on destination county d and year t fixed effects, and calculate the residuals.
The map’s color coding depicts the 20 quantiles of the residuals across counties and within
census periods. Darker colors indicate a higher quantile.
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Appendix Figure 3: Step 1 – Predicting Ancestry (2010)

Notes: This figure is a binned scatter plot of actual ancestry in 2010 against predicted
ancestry, as given in equation (3), where bins are fixed based on predicted ancestry and
the size of each circle indicates the log number of observations in a given bin. The labeled
counties are those with the highest number of individuals declaring a given ancestry in
2010. The corresponding regression of Ao,d,2010 on Âo,d,2010, as defined in equation (3),
yields an R2 of 74.9%.
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1975-1980

1990 - 1995

2005 - 2010

1980 - 1985

1995 - 2000

1985 - 1990

2000 - 2005

Appendix Figure 4: Immigration Shock Conditional on County and Time
Fixed Effects

Notes: This figure maps the instrumented non-European immigration flows into US coun-
ties by 5-year periods. We regress the instrument for immigration into US county d at
time t on county and year fixed effects, and calculate the residuals. This figure provides
a visualization for the immigration shocks used as instruments in the regression shown in
column 3 of Table 3. The map’s color coding depicts the 200 quantiles of the residuals
across counties and within census periods. Darker colors indicate a higher quantile.
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B Structural Model and Estimation Appendix

This appendix provides an equilibrium definition and balanced growth path analysis of the
quantitative equilibrium regional endogenous growth model. This appendix also provides in-
formation on the solution and simulation of the model away from the balanced growth path,
together with details of the structural estimation procedure as well as various model extensions.

B.1 Structural Model

B.1.1 Set-up

There are d = 1, ..., D destination regions. There are o = 1, ..., O origin nations. Time t is
discrete.

Final Goods Production. A final good is produced by a firm in d with the technology

Yt = Zd,tQd,tL
α
Y,d,t

where Qd,t is the number of ideas used by the firm in d at time t and LY,d,t is labor used for
production purposes by the firm in region d at time t. The elasticity of output to labor satisfies
0 < α < 1. The stationary exogenous shock Zd,t to production efficiency satisfies

lnZd,t = ρ lnZd,t−1 + εd,t,

where the autocorrelation of the shock satisfies 0 < ρ < 1. We have positive variance with
εd,t ∼ N (0, σ2

ε ), where σε > 0.

Idea Production. A mass Nd,t of new ideas is produced each period by a research firm with
an innovation or idea production technology given by

Nd,t = LγN,d,tQ̄
ζ
d,t−1,

where the elasticity of innovation to researchers satisfies 0 < γ < 1 and the elasticity of
innovation to ideas satisfies 0 < ζ < 1 where 0 < γ + ζ ≤ 1. There are positive externalities
in the growth process, through which past ideas aid in the production of new ideas. Q̄d,t−1 is
a weighted average of varieties invented across regions at time t − 1 described further below.
Note that we have that the mass of varieties invented in region d evolves according to

Qd,t = Nd,t +Qd,t−1.

In our baseline in the text we assume that ζ = 1 − γ, but we quantitatively consider
alternative cases allowing for γ + ζ 6= 1 below in Figure 7.

Regional Idea Aggregates & Spillovers. The mass of ideas useful to researchers in region
d at time is given by

Q̄d,t =
D∏
f=1

Q
α(d,f)
ft .
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The elasticity of region d’s research-effective ideas to region f ’s invented ideas, is α(d, f). The
elasticities sum to 1 for each region d, i.e.,∑

f

α(d, f) = 1,

and the elasticities are proportional to a term declining in the physical distance d̃(d, f) between
d and f with

α(d, f) ∝ 1− δd̃(d, f)

for some value δ ≥ 0. Note that two extreme cases are nested: no idea spillovers (δ = ∞)
and full idea spillovers (δ = 0). The baseline model described in the text imposes no spillovers
with δ = ∞, in which case Q̄d,t = Qd,t. We quantitatively consider a case of full national idea
spillovers with δ = 0 below in Figure 5.

Population Structure: Residents, Immigrants, Domestic Migrants, and Ancestry.
The population of region d is made up of current residents, domestic migrants, and immi-
grants, all of whom are members of the labor force. Growth in the population comes only from
immigrants and domestic migrants, with accumulation of the labor force over time according
to

Ld,t+1 =
O∑
o=1

Io,d,t +
D∑
d′=1

Md′,d,t + (1− µ)Ld,t.

Above, Io,d,t is the mass of immigrants from origin o in destination d at time t. The sum of
migrants across all destinations d from a given origin is

Io,t =
∑
d

Io,d,t,

and the sum of migrants across all origins o in a given destination is

Id,t =
∑
o

Io,d,t.

Domestic migrants from origin county d′ to destination county d at time t are given by
Md′,d,t. Domestic migrants of ancestry o from county d′ to county d at time t are indicated by
Mo,d′,d,t. A randomly selected fraction µ ∈ (0, 1) of the domestic population receives a migration
opportunity shock, in which case they are able to domestically migrate to any county including,
potentially, their own according to the optimization problem laid out below. The total (gross)
domestic outmigration from a county d′ at time t is given by

Md′,.,t =
D∑
d=1

Md′,d,t,

and we must have given the random assignment of the migration shock that Md′,.,t = µLd′,t.
The total (gross) domestic inmigration to a county d at time t is given by

M.,d,t =
D∑
d′=1

Md′,d,t.
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The stock of residents in destination d with ancestry from origin o in time t is given by Ao,d,t
which evolves over time according to Ao,d,t+1 = Io,d,t +

∑D
d′=1Mo,d′,d,t + (1−µ)Ao,d,t. Aggregates

Ao,t and Ad,t are defined analogously to Io,t and Id,t above. Given random assignment of the
migration shock we have that total (gross) outmigration of ancestry o from county d′ at time t
is

Mo,d′,.,t =
D∑
d=1

Mo,d′,d,t,

and given random migration shock assignment we also have that Mo,d′,.,t = µAo,d′,t.

Immigrant Population Dynamics & Destination Choices. The supply of migrants ex-
ogenously grows at rate n but is also subject to some stationary iid shocks, i.e.,

Io,t = (1 + n)teνo,t ,

where the shocks νot are normal with mean 0 and variance σ2
ν . Individual migrants from origin

o within the continuum of migrants Io,t statically optimize over destinations d according to
a discrete choice framework, taking into account expectations of conditions in all possible
destination counties in the following period. A migrant i’s expected utility u from migrating
to destination d in period t is

uo,d,t(i) = e−τo,d,tεd,t(i)EtW λ
d,t+1

(
Ao,d,t+1

Ao,t+1

)1−λ

where εd,t(i) are iid extreme-value distributed shocks across migrants i with dispersion parame-
ter θ, τo,d,t ∼ N (0, σ2

τ ) are iid normal shocks representing bilateral costs, and the relative weight
on wages versus ancestry composition satisfies 0 < λ < 1. The expectations Et in the immi-
gration payoffs are rational and incorporate fully all information available within the model in
period t.

Domestic Migrant Dynamics & Destination Choices. Any individual with ancestry
o who is a domestic resident of county d′ randomly receiving a migration shock statically
optimizes their destination county d according to a discrete choice framework, taking into
account expectations of conditions in all possible destination counties in the following period.
Such a migrant ξ’s expected utility ũ from migrating to destination d in period t is

ũo,d,t(ξ) = ε̃d,t(ξ)EtW λ
d,t+1

(
Ao,d,t+1

Ao,t+1

)1−λ

where ε̃d,t(ξ) are iid extreme-value distributed shocks across domestic migrants ξ with dispersion
parameter θ, and the relative weight on wages versus ancestry composition satisfies 0 < λ < 1.
The expectations Et in the domestic migrant’s payoffs are rational and incorporate fully all
information available within the model in period t.

Resident Labor Supply. Each resident in the continuum of mass Ld,t in destination d and
time t supplies one unit of labor inelastically to only its local labor market and can choose
whether to allocate this labor to the output sector “Y ” or the innovation/new ideas sector
“N ,” resulting in the following identity: LY,d,t + LN,d,t = Ld,t.
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B.1.2 Equilibrium Definition

An equilibrium in this economy is a sequence of local wages {Wd,t}d, patent prices {pd,t}d, immi-
gration flows {Io,d,t}o,d, {Id,t}d, {Io,t}o, domestic migration flows {Mo,d′,d,t}o,d′,d, ancestry levels
{Ao,d,t}o,d, {Ad,t}d, {Ao,t}o, labor force levels {Ld,t}d, labor force allocations {LN,d,t, LY,d,t}d,
output levels {Yd,t}d, patent flows {Nd,t}d, local idea levels {Qd,t}d, research knowledge levels
{Q̄d,t}, and productivity levels {Zd,t}d such that the following conditions hold.

Final Goods Producers Optimize. Taken as given the numeraire price of the nationally
traded output good, local wages Wd,t, patent prices pd,t, local idea levels Qd,t−1, and local
productivity levels Zd,t as given, the competitive local final goods producer in region d chooses
patent demand Nd,t and production labor demand LY,d,t to maximize static profits

max
Nd,t,LY,d,t

Zd,t(Nd,t +Qd,t−1)LαY,d,t −Wd,tLY,d,t − pd,tNd,t.

This optimization leads to two input optimality conditions listed below.

Research Firms Optimize. Taking as given the price of new varieties or patents pd,t and the
wage Wd,t, the research firm demands research labor LN,d,t to maximize flow profits according
to

max
LN,d,t

pd,tL
γ
N,d,tQ̄

ζ
d,t−1 −Wd,tLN,d,t.

Note that the underlying timing here requires that the research firm only be paid for a single
period’s use of their new ideas or varieties, which are assumed to become freely available to
all local firms after one period. This optimization leads to two input optimality conditions
listed below, which we emphasize represent a static research choice given our assumption on
the timing of expiration of protection of new ideas.

Immigrants Optimize. Taking as given wages {Wd,t}d in all regions, as well as ancestry
levels {Ao,d,t}o,d and {Ao,t}o, an individual immigrant i from origin o in period t optimally
chooses their destination d to maximize their static expected utility

uo,d,t(i) = e−τo,d,tεd,t(i)EtW λ
d,t+1

(
Ao,d,t+1

Ao,t+1

)1−λ

.

As usual, this structure together with the distributional assumption on εd,t(i) leads via a
discrete-choice law of large numbers across migrants to immigration shares given by

Io,d,t = Io,t


e−θτo,d,t

(
EtW λ

d,t+1

(
Ao,d,t+1

Ao,t+1

)(1−λ)
)θ

∑D
k=1 e

−θτo,k,t

(
EtW λ

k,t+1

(
Ao,k,t+1

Ao,t+1

)(1−λ)
)θ
 .

Domestic Migrants Optimize. Taking as given wages {Wd,t}d in all regions, as well as
ancestry levels {Ao,d,t}o,d and {Ao,t}o, an individual ξ of ancestry o from resident in county d′ in
period t and hit by the random migration opportunity shock optimally chooses their destination
d to maximize their static expected utility
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ũo,d,t(ξ) = ε̃d,t(ξ)EtW λ
d,t+1

(
Ao,d,t+1

Ao,t+1

)1−λ

.

As usual, this structure together with the distributional assumption on ε̃d,t(ξ) leads via a
discrete-choice law of large numbers across domestic migrants to shares given by

Mo,d′,d,t = µAo,d′,t


(
EtW λ

d,t+1

(
Ao,d,t+1

Ao,t+1

)(1−λ)
)θ

∑D
k=1

(
EtW λ

k,t+1

(
Ao,k,t+1

Ao,t+1

)(1−λ)
)θ
 .

Note that the share of domestic migrants of ancestry o from county d′ to county d is a
function of only the ancestry o and destination county d, allowing us to define domestic share
variables

so,d,t =


(
EtW λ

d,t+1

(
Ao,d,t+1

Ao,t+1

)(1−λ)
)θ

∑D
k=1

(
EtW λ

k,t+1

(
Ao,k,t+1

Ao,t+1

)(1−λ)
)θ


where Mo,d′,d,t = µAo,d′,tso,d,t.

Residents Optimize. Individual residents from the labor force of mass Ld,t optimally choose
whether to supply labor in the ideas sector or output sector in their local region. This opti-
mization requires, if labor used in both sectors is positive in equilibrium, that the workers be
indifferent across sectors and face a common wage Wd,t in both final goods and idea production.

Note that the assumptions we have made, which constrain all profit maximization problems
by firms and labor decisions by immigrants and residents to be static, do not require us to specify
further the nature of household preferences, the details of the nationally traded goods market,
nor the intertemporal prices of any assets or savings. To characterize the joint equilibrium
dynamics of innovation, immigration, wages, and output, these supplemental details can remain
unrestricted.

Labor Markets Clear. The total labor demanded in final goods and ideas production in
region d equals the labor force LY,d,t + LN,d,t = Ld,t, and the labor force evolves dynamically
according to the optimal location decisions of immigrants and domestic inmigrants Ld,t+1 =
Id,t + (1− µ)Ld,t +M.,d,t.

Ideas Markets Clear. The patent or variety flows demanded by the final goods firm in
region d equal the patent or varieties produced by the research firms in region d at the value
Nd,t.

Productivity Levels Evolve Exogenously. Productivity Zd,t in region d evolves stochas-
tically and exogenously according to

lnZd,t = ρ lnZd,t−1 + εd,t
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where shocks are iid according to εd,t ∼ N (0, σ2
d).

B.1.3 Equilibrium Solution

The equilibrium of the economy can be summarized as a system of 2O+D×(3O+10) nonlinear
equations in 2O + D × (3O + 10) endogenous and exogenous variables. These equations are
listed below.

• O equations characterizing the immigration push process Io,t from origin o to all destina-
tions at time t

Io,t = (1 + n)teνo,t , νot ∼ N(0, σ2
ν)

• O ×D equations characterizing Io,d,t, the immigration flows from origin o to destination
d at time t

Io,d,t = Io,t


e−θτo,d,t

(
EtW λ

d,t+1

(
Ao,d,t+1

Ao,t+1

)(1−λ)
)θ

∑D
k=1 e

−θτo,k,t

(
EtW λ

k,t+1

(
Ao,k,t+1

Ao,t+1

)(1−λ)
)θ
 .

τokt ∼ N(0, σ2
τ )

Note that Io,t =
∑D

d=1 Io,d,t is redundant based on the equations above.

• OD equations characterizing so,d,t, the domestic migration shares of flows of ancestry o
potential migrants to destination d at time t

so,d,t =


(
EtW λ

d,t+1

(
Ao,d,t+1

Ao,t+1

)(1−λ)
)θ

∑D
k=1

(
EtW λ

k,t+1

(
Ao,k,t+1

Ao,t+1

)(1−λ)
)θ
 .

Note that Mo,d′,d,t = µAo,d′,tso,d,t are redundant given so,d,t and Ao,d′,t.

• O ×D equations linking ancestry shares to immigration and domestic migration flows

Ao,d,t+1 = (1− µ)Ao,d,t + Io,d,t +
D∑
d′=1

µAo,d′,tso,d,t

• O equations linking total ancestry stocks to regional ancestry stocks

Ao,t =
D∑
d=1

Ao,d,t

• D equations linking population dynamics to immigration and domestic migration flows

Ld,t+1 = (1− µ)Ld,t +
O∑
o=1

Io,d,t +
O∑
o=1

D∑
d′=1

µAo,d′,tso,d,t
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• D equations with the final goods production function for Yd,t

Yd,t = Zd,tQd,tL
α
Y,d,t

• D equations characterizing exogenous local productivity dynamics

lnZd,t = ρ lnZd,t−1 + εd,t, εd,t ∼ N (0, σ2
d).

• D equations with the idea production function for the mass of new ideas Nd,t

Nd,t = LγN,d,tQ̄
ζ
d,t−1

• D equations characterizing idea dynamics in each region

Qd,t = Nd,t +Qd,t−1.

• D equations summarizing spillovers through the effective ideas available to researchers in
d at time t, Q̄d,t:

Q̄d,t =
D∏
f=1

Q
α(d,f)
ft .

• D equations linking labor used in production LY,d,t inversely to the wage

αZd,tQd,tL
α−1
Y,d,t = Wd,t

• D equations linking labor used in research LN,d,t inversely to the wage

γpd,tL
γ−1
N,d,tQ̄

ζ
d,t−1 = Wd,t.

• D equations linking the price of new ideas positively to the local productivity shock and
labor used in production.

Zd,tL
α
Y,d,t = pd,t.

• D equations for labor market clearing

LN,d,t + LY,d,t = Ld,t

Balanced Growth Path Growth Rates. We say that variable X grows at rate gX if
Xt = (1 + gX)Xt−1 or equivalently if Xt ∝ (1 + gX)t. We guess and verify that the equilibrium
conditions are satisfied with a steady state growth path structure. Assume that all shocks are
equal to 0, i.e., τo,d,t = 0, εd,t = 0, and νo,t = 0. Note that if gQ is the growth rate of Qd,t for
each region, then Q̄d,t also trivially grows at rate gQ, since

∑
f α(d, f) = 1 for all d. Then, note

that the growth rate of new ideas in each region is given by

Nd,t

Qd,t−1

=
LγN,d,tQ̄

ζ
d,t−1

Qd,t−1
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=

(
LγN,d,t

Q1−ζ
d,t−1

)(
Q̄d,t−1

Qd,t−1

)ζ
On a balanced growth path we have

gQ =
Nd,t

Qd,t−1

gQ =

(
LγN,d,t

Q1−ζ
d,t−1

)(
Q̄d,t−1

Qd,t−1

)ζ
gQ ∝

LγN,d,t

Q1−ζ
d,t−1

which implies that
LγN,d,t ∝ Q1−ζ

d,t−1 ∝ Q1−ζ
d,t .

Qd,t ∝ L
γ

1−ζ
N,d,t.

So we conclude that
1 + gN = 1 + gQ̄ = 1 + gQ = (1 + gLN )

γ
1−ζ .

Intuitively, this means that in the long run, only increased research labor input drives growth,
a direct implication of the fact that this model falls into the class of semi-endogenous growth
models from Jones (1995). Recall that the optimality condition for ideas in goods production
is

pd,t = Zd,tL
α
Y,d,t,

so on a steady state growth path we have

1 + gP = (1 + gLY )α.

The optimality condition for labor demand in innovation is

Wd,t = γpd,tL
γ−1
N,d,tQ̄

ζ
d,t−1.

But we have that LγN,d,t ∝ Q̄1−ζ
d,t−1 on a steady state growth path (from the patenting equation

arguments above) so that

Wd,t ∝ pd,t
Q̄1−ζ
d,t−1Q̄

ζ
d,t−1

LN,d,t
= pd,t

Q̄d,t−1

LN,d,t

so that

1 + gW = (1 + gP )
(1 + gQ̄)

(1 + gLN )
= (1 + gLY )α

(1 + gLN )
γ

1−ζ

(1 + gLN )
= (1 + gLY )α(1 + gLN )

γ
1−ζ−1.

But then from the optimality condition for labor demand in production we also have that

Wd,t = αZd,tQd,tL
α−1
Y,d,t,
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so that on a steady-state growth path

1 + gW = (1 + gQ) (1 + gLY )α−1

1 + gW = (1 + gLN )
γ

1−ζ (1 + gLY )α−1 .

Equalizing the expressions for 1 + gW from the production and innovation labor demand opti-
mality conditions yields

(1 + gLN )
γ

1−ζ (1 + gLY )α−1 = (1 + gLY )α(1 + gLN )
γ

1−ζ−1,

1 + gLN = 1 + gLY .

But then since Ld,t = LY,d,t + LN,d,t, we also have 1 + gL = 1 + gLY = 1 + gLN . Now, also note
that since

Io,t = (1 + n)teνo,t ,

we immediately see that on a growth path 1 + gIo = 1 + n. Since the endogenous immigration
flows Io,d,t are proportional to Io,t on a growth path, we also have 1 + gIo = 1 + gIo,d . Since the
ancestry accumulation equations imply (once the stationarity of the domestic migration shares
so,d,t on a steady state growth path is noted) that ancestry is proportional to immigration flows,
we also have that 1 + gAo,d = 1 + gAo = 1 + n. And therefore, since the labor accumulation
equations also imply proportionality between total labor and immigration and ancestry, we
have 1 + gL = 1 +n. In other words, all labor or population outcomes (total and disaggregated
immigration, total and disaggregated domestic migration, total and disaggregated ancestry,
total and disaggregated labor forces) all grow at rate 1 + n on a steady state growth path,
driven by the growth in immigration flows at rate 1 + n. But then at this point we can write
several growth rates from above more explicitly, i.e.,

1 + gQ = 1 + gQ̄ = 1 + gN = (1 + n)
γ

1−ζ

1 + gp = (1 + n)α

1 + gW = (1 + n)
γ

1−ζ+α−1 .

Now from the goods production function we also have

Yd,t = Zd,tQd,tL
α
Y,d,t

implying
1 + gY = (1 + gQ)(1 + gLY )α = (1 + n)

γ
1−ζ (1 + n)α = (1 + n)

γ
1−ζ+α.

Therefore we immediately have that the growth rate of per capita output is

1 + gY/L = (1 + gY )/(1 + n) = (1 + n)
γ

1−ζ+α−1 = 1 + gW ,

i.e., wages and per capita output grow at the same rate. Note that for wages and per-capita
output to grow at a positive rate we must have the following parametric restriction

γ

1− ζ
+ α− 1 > 0.

In the constant returns innovation function case, our baseline model with γ = 1 − ζ, we have
that this restriction is always satisfied since α > 0.34 But with weaker long-run externalities
from idea stocks if ζ < 1− γ the condition is needed to ensure that ideas have a large enough
influence on the marginal product of labor to overcome the long-run neoclassical impact of
growing labor supply.

34The condition is also satisfied in our robustness checks to multiples cases with ζ 6= 1− γ in Figure 7 below.
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Balanced Growth Path Equilibrium Conditions. Given the derivations above of BGP
growth rates, we can scale or detrend the variables and equations above to express them in
stationary form away from the BGP. The number of variables is again 2O + D × (3O + 10),
denoted with lowercase labels:

1. io,t = Io,t
(1+n)t

, O immigration supply shocks

2. io,d,t =
Io,d,t

(1+n)t
, O ×D immigration flows to region d from o at time t

3. so,d,t, O×D domestic migration flow shares of ancestry o domestic migrants to destination
d at time t are already stationary

4. ao,d,t =
Ao,d,t
(1+n)t

, O ×D ancestry stocks from o in region d in time t

5. ao,t = Ao,t
(1+n)t

, O ancestry stocks from o in total in time t

6. ld,t =
Ld,t

(1+n)t
, D total labor stocks

7. lN,d,t =
LN,d,t
(1+n)t

, D labor inputs used in innovation

8. lY,d,t =
LY,d,t
(1+n)t

, D labor inputs used in production

9. yd,t =
Yd,t

(1+n)(
γ

1−ζ+α)t
, D outputs

10. D values of zd,t, which is already stationary productivity zd,t = Zd,t

11. nd,t =
Nd,t

(1+n)t
, D masses of new ideas

12. qd,t =
Qd,t

(1+n)(
γ

1−ζ )t
, D masses of ideas invented locally

13. q̄d,t =
Q̄d,t

(1+n)(
γ

1−ζ )t
, D aggregates of ideas useful for innovation locally

14. wd,t =
Wd,t

(1+n)(
γ

1−ζ+α−1)t
, D wages

15. pd,t =
pd,t

(1+n)αt
, D prices of new ideas

These stationary variables are pinned down by the same number of nonlinear equations in sta-
tionary form, which are equivalent to the raw equilibrium conditions above but simply rescaled.
The equations are:

1. Immigration push shock distributions

io,t = eνo,t
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2. Endogenous immigration flows

io,d,t = io,t


e−θτo,d,t

(
Etwλd,t+1

(
ao,d,t+1

ao,t+1

)(1−λ)
)θ

∑D
k=1 e

−θτo,k,t

(
Etwλk,t+1

(
ao,k,t+1

ao,t+1

)(1−λ)
)θ
 .

3. Endogenous domestic migration shares

so,d,t =


(
Etwλd,t+1

(
ao,d,t+1

ao,t+1

)(1−λ)
)θ

∑D
k=1

(
Etwλk,t+1

(
ao,k,t+1

ao,t+1

)(1−λ)
)θ
 .

4. Ancestry accumulation equations

ao,d,t+1 =
1

1 + n

(
(1− µ)ao,d,t + io,d,t +

D∑
d′=1

so,d,tµao,d′,t

)

ao,d,t+1 =
1

1 + n

(
(1− µ)ao,d,t + io,d,t + so,d,tµ

D∑
d′=1

ao,d′,t

)

ao,d,t+1 =
1

1 + n
((1− µ)ao,d,t + io,d,t + so,d,tµao,t)

5. Ancestry across regions identity

ao,t =
D∑
d=1

ao,d,t

6. Labor force accumulation equations

ld,t+1 =
1

1 + n

(
(1− µ)ld,t +

O∑
o=1

io,d,t +
D∑
d′=1

O∑
o=1

so,d,tµao,d′,t

)

=
1

1 + n

(
(1− µ)ld,t +

O∑
o=1

io,d,t +
O∑
o=1

so,d,tµ

D∑
d′=1

ao,d′,t

)

=
1

1 + n

(
(1− µ)ld,t +

O∑
o=1

io,d,t +
O∑
o=1

so,d,tµao,t

)
7. Labor market clearing equations

ld,t = lY,d,t + lN,d,t

8. Output production functions
yd,t = zd,tqd,tl

α
Y,d,t
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9. Regional productivity shocks stochastic processes

ln zd,t = ρ ln zd,t−1 + εd,t

10. Idea production functions

nd,t = lN,d,t
γ q̄ζd,t−1(1 + n)

γζ
ζ−1

11. Idea accumulation equations

qd,t = nd,t +

(
1

1 + n

)
qd,t−1

12. Regional research knowledge aggregators

q̄d,t =
D∏
f=1

q
α(d,f)
ft

13. Labor demand optimality for final goods producers

wd,t = αzd,tqd,tl
α−1
Y,d,t

14. Labor demand optimality from research firms

wd,t = γpd,tl
γ−1
n,d,tq̄

ζ
d,t−1(1 + n)

γζ
ζ−1

15. Idea demand optimality from final goods producers

pd,t = zd,tl
α
Y,d,t

B.1.4 Numerical Solution and Simulation

We solve the stationary system of equations from section B.1.3 above using second-order per-
turbation around the nonstochastic BGP of the economy. This nonlinear solution approach
is crucial for accounting for the nonlinear mapping from shocks to immigration supply νot to
immigration flows at the regional level which is state-dependent, varying with predetermined
ancestry levels and current wages.

To simulate the model, we draw immigration supply shocks νot, regional productivity shocks
εd,t, and bilateral immigration cost shocks τo,d,t for a large number of periods T = 1000, O = 10
origins, and D = 9 destination regions. Given a parametrization of the model, the exogenous
shock draws together with the nonlinear policy functions obtained in our solution step allow for
unconditional simulation of the model. This unconditionally simulated data can be processed
to produce a range of moments for structural estimation of the model, which is detailed below.
Given that we only compute local and symmetric national responses, and given that model
nonlinearities relate primarily to asymmetric histories across locations, we compute impulse
repsonses using a linearized version of the model.

We implement all of these numerical model steps, i.e., solution, unconditional simulation,
and impulse response calculations, using Dynare within a MATLAB environment. Given the
smooth nature of our equilibrium conditions, the well behaved non-stochastic BGP, and the
large number of equilibrium conditions, the Dynare package is a natural choice for numerical
analysis in this context.
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B.2 Structural Estimation

To parameterize our model, we first externally calibrate or fix the magnitudes of various pa-
rameters to values commonly employed in the literature. To match our empirical approach,
we solve and simulate the model in five-year periods, and we choose the value n of exogenous
population growth n, equal to the BGP growth rate of knowledge or ideas in our economy,
to be 2% on an annualized basis. Note that the value α has a literal labor share in output
interpretation, but α also has an interpretation in many tightly related growth models as the
parameter governing markups for intermediate goods firms. So we choose α to imply a round
value of a 20% markup, i.e., α = 1/1.2 ≈ 0.8 in our baseline. Based on the analysis in Caliendo
et al. (2019), we match an elasticity of immigration shares to local wages of 0.5 through the
choices λ = 0.5 and θ = 1. We also choose the domestic migration shock probability µ to
guarantee a steady-state mobility rate of around 5.6% on an annualized basis from CPS data
in the 1980-2010 period (US Census Bureau, 2022).

Estimated Parameters. After external calibration of the parameters noted above, there are
seven remaining parameters in our model:

1. Elasticity of local innovation to researchers γ

2. Autocorrelation of regional productivity shocks ρ

3. Volatility of regional productivity shocks σε

4. Volatility of immigration supply shocks σν

5. Volatility of bilateral immigration cost shocks στ

6. Linear decline in research knowledge spillovers with distance δ

7. Elasticity of local innovation to idea stocks ζ

We structurally estimate the values of the first five parameters above using an overidentified
simulated method of moments (SMM) procedure outlined below.35 For the sixth parameter,
related to idea spillovers, we explore the implications of varying the parameter to extreme values
implying full, frictionless spillovers of ideas across regions (δ = 0) versus no idea spillovers
across idea-autarkic regions (δ =∞, our baseline described in the main text). For each of these
alternative cases for idea spillovers, we implement the full SMM estimation procedure below
conditional upon the appropriate value of δ. Note also that the values we choose for δ, 0 vs ∞,
imply spillovers that are either non-existent or independent of distance, implying that we do
not need to explicitly specify the geographic structure of the model. Finally, for the seventh
parameter ζ, we make the baseline assumption ζ = 1 − γ of constant returns in innovation,
relaxing this assumption in robustness checks in Figure 7 below.

35Note that one of our target moments is an IV regression coefficient, leading us to sometimes interchangeably
refer to this approach as an indirect inference procedure in the main text.
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Target Moments. To discipline the values of the five estimated parameters, we target the
value of six related moments:

1. IV coefficient estimating the elasticity of patenting to immigration at the county d level

2. Standard deviation of origin-level immigration flows at the origin o level

3. Standard deviation of destination d-level immigration flows

4. Standard deviation of origin o × destination d-level immigration flows

5. Autocorrelation of output per capita at the county d level

6. Autocorrelation of patenting at the county d level

Moments 1-4 and 6 are directly computable within the 1975-2010 sample used for the main
reduced-form empirical results in the paper. We compute the fifth moment based on the BEA
(2021)’s county level GDP estimates for five-year periods within the available 2001-19 window.

Although the mapping from parameters to moments in our model is nonlinear and joint in
nature, there are certain parameters particularly influential for determining the value of indi-
vidual moments in our simulation. In particular, the IV-estimated elasticity of patenting to
immigration moves directly in the model with the underlying local elasticity of innovation to
researchers γ. The volatilities of origin-, destination-, and origin × destination-level immigra-
tion flows depend upon the volatilities of origin-, destination-, and origin × destination-level
exogenous shocks σν , σε, and στ , respectively. The autocorrelations of per-capita output and
patenting increase with the autocorrelation of underlying regional productivity shocks ρ.

SMM Objective and Standard Errors. First, we collect the five estimated parameters
into the vector θ = (γ, ρ, σε, σν , στ )

′. We similarly collect the values of the six target moments m
into vectors, denoting by m(X) the value of these moments in the empirical data X, denoting
by mS(θ) the values of these moments based on our unconditionally simulated data in the
model, and denoting by m(θ) the population values of these moments. Our SMM estimation
procedure generates point estimates θ̂ as the solution to the minimization problem

min
θ

(m(X)−mS(θ))′W (m(X)−mS(θ)),

where W is a symmetric weighting matrix for the simulated moment deviations. If the moment
vector behaves in an asymptotically normal fashion according to

√
N (m(X)−m(θ))→d N (0, V ),

then standard SMM derivations yield asymptotic normality for the parameter estimates

√
N
(
θ̂ − θ

)
→d N (0,Σ),

where the asymptotic variance Σ is given by the sandwich formula

Σ =

(
1 +

1

S

)(
∂m

∂θ

′
W
∂m

∂θ

)−1
∂m

∂θ

′
WVW

∂m

∂θ

(
∂m

∂θ

′
W
∂m

∂θ

)−1
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Above, ∂m
∂θ

is the Jacobian of model moments to parameters and S is the ratio of the simulated
to empirical sample sizes.

Some practical decisions must be made to compute point estimates θ̂ as well as a feasible
estimate Σ̂ of the asymptotic variance above. First, we use the identity weighting matrix W = I.
We compute the Jacobian numerically using finite differences relative to our point estimates. To
compute an estimate of the moment covariance matrix V̂ , we first impose diagonality across the
moments which all differ by aggregation level and sample size. We then compute asymptotic
variances for each moment using a combination of standard analytic formulas, clustering by

state, and the Delta method. The resulting standard errors reported are given by
(

diagΣ̂

N

)0.5

.

The main text’s Table 6 reports parameter estimates, standard errors, and model vs data
moments for our baseline case with no idea spillovers, and Table 19 reports the same information
for the alternative case with full idea spillovers.

B.3 Immigration and Naturalization Act Accounting Exercise

In order to model a scenario that mimics a hypothetical failure of the Immigration and Nat-
uralization Act (INA) to pass in 1965, we compute the counterfactual evolution over time of
macroeconomic aggregates in a version of our model in which we feed a string of negative exoge-
nous shocks to immigration supply, symmetric across origins, which reduce the US population
growth rate by 16% relative to our baseline calibrated model.

To compute this 16% value, we proceed as follows. We first extract overall population counts
and counts of the population of the foreign born from decadal US Census tabulations in the
1860-2010 time period (US Census Bureau, 2014). The total population in Census year t, Pt,
is made up of native, Nt, and foreign-born individuals, Ft,

Pt = Nt + Ft.

We can then decompose the growth rate of the US population as a whole into a fraction
accounted for by natives (∆Nt/∆Pt) and the remaining fraction accounted for by the foreign
born (∆Ft/∆Pt),

∆Pt
Pt

=
∆Pt
Pt

(
∆Nt

∆Pt
+

∆Ft
∆Pt

)
.

The share of the US population growth rate accounted for by natives fell from 95% in the
decades before the INA (1860-1960) to 80% in the decades after (1970-2010).

We then assume that the only exogenous change in a world with the INA compared to a
world without is the process for immigration. The growth of the native population, as a share
of the US population, remains constant, ∆Nt/Pt|no INA = ∆Nt/Pt|INA. To match the decrease of
the share of the population growth rate coming from natives (∆Nt/∆Pt) from 95% in the pre-INA
period to 80% in the post-INA period, we calibrate a world without the INA by feeding a string
of negative exogenous shocks to immigration supply, symmetric across regions, such that the
US population growth rate declines by 16%.36

36The population growth rate is x% lower in a world without versus with the INA, g|no INA = (1− x)g|INA.
Imposing that the contribution of natives to the population remains constant, g|no INA∆Nt/∆Pt|no INA =
g|INA∆Nt/∆Pt|INA, and plugging in the empirical contribution of natives to population growth pre- and post-INA
(95% and 80% respectively), we get x = 1− 0.8/0.95 ≈ 0.16.
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We can compute the total difference in immigration over 45 years (corresponding to 1965-
2010) in our two scenarios, with and without the INA. Given that the reduction in the annual
population growth rate from 1.03% to 0.87% is solely due to a reduction in immigration, there
would have been 21 million fewer migrants.37

Appendix Table 19: Parameters and Model Fit, Full Idea Spillovers

Panel A: Moments Data Model

IV coeff., patentingd,t on immigration Id,t 1.6519 1.6418
(0.1500)

Std. deviation, o immigration Io,t 0.4061 0.3931
(0.0284)

Std. deviation d immigration Id,t 0.1794 0.1815
(0.0110)

Std. deviation, o-d immigration Io,d,t 0.0716 0.1188
(0.0117)

Autocorrelation, output per capita Yd,t/Ld,t 0.9611 0.9518
(0.0057)

Autocorrelation, patentingd,t 0.9309 0.8745
(0.0065)

Panel B: Estimated Parameters Symbol Value

Elasticity, patenting to labor γ 0.7674
(0.1392)

Autocorrelation, county TFP ρ 0.8681
(0.0366)

Std. deviation, county TFP shocks σε 0.0239
(0.0130)

Std. deviation, immigration push shocks σν 0.5864
(0.0797)

Std. deviation, bilateral immigration shocks στ 0.5780
(0.0714)

Notes: The table reports the model fit and estimated parameters
in the alternative model with full idea spillovers across counties.
The top Panel A reports targeted data moments vs simulated model
moments. The bottom Panel B reports the estimated parameters.
The standard errors, in parentheses beneath moments and estimates,
are clustered by state.

37The realized US population growth is 1.03% per year, from 195 to 309 million. In a counterfactual scenario
without the INA, with an annual population growth rate falling by 16% to 0.87% per year, the total population
would grow from 195 to 289 million, 21 million fewer than in the scenario with the INA, entirely attributable
to missing migrants.
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Appendix Table 20: Target IV Regression in Simulated Model Data

IHS(Patenting)

IHS(Immigration) 1.641∗∗∗

(0.176)

N 8991
First Stage F-Stat 51
AR Wald F-Test p-value 0.000

Geography FE Yes
Time FE Yes

Notes: The table reports the coefficient βIHS
from (7) estimated using IHS(Îd,t) as an in-
strumental variable in simulated model data.
The simulated panel dataset at the county
by time level is constructed using our base-
line parameter estimates from Table 6. We
unconditionally simulate D = 9 destination
counties d with O=10 origin countries o for
total of T = 1000 time periods t, with timing
conventions yielding a total of D × T - D =
8991 observations in our simulated dataset.
Standard errors are clustered by destination.
*, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Appendix Figure 5: Full Idea Spillovers in the Model

Notes: The figure plots impulse response functions to a one-standard deviation immi-
gration shock in period 1. The left panel plots patenting nd,t. The right panel plots
the response of the wage wd,t. The immigration shock is from a single origin o, and the
responses of the labor force, patenting, and the wage are local responses for a county d.
The solid blue line labelled Baseline traces the impact of the immigration shock in our
baseline estimated model with no cross-region spillovers. The dashed light blue line la-
belled Spillovers reports the impact of an immigration shock in our alternative estimated
model allowing for full idea spillovers. The responses are in percentage deviations from
the balanced growth path.
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Appendix Figure 6: Alternative Returns to Scale in the Model

Notes: The figure plots impulse response functions to a one-standard deviation immi-
gration shock in period 1. The left panel plots patenting nd,t. The right panel plots
the response of the wage wd,t. The immigration shock is from a single origin o, and the
responses of the labor force, patenting, and the wage are local responses for a county d.
The solid blue line labelled Baseline traces the impact of the immigration shock in our
baseline estimated model with α ≈ 0.8. The dashed light blue line labelled Higher α
reports the case of α = 0.95, while the dashed dot darker blue line labelled Lower α uses
α = 0.7. The responses are in percentage deviations from the balanced growth path.
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Appendix Figure 7: Alternative Returns to Scale in Innovation

Notes: The figure plots impulse response functions of patenting nd,t to a one-standard
deviation immigration shock in period 1. The immigration shock is from a single origin
o, and the responses of the labor force, patenting, and the wage are local responses for a
county d. The solid blue line labelled Baseline traces the impact of the immigration shock
in our baseline estimated model with an elasticity of innovation past ideas of 1− γ̂ ≈ 0.2.
The dashed light blue line instead considers an elasticity of innovation to past ideas
of ζ = 0.1 in an extended, re-estimated semiendogenous growth model with innovation
function Nd,t = LγN,d,tQ

ζ
d,t−1. The dashed dot darker blue line considers an elasticity

of innovation to past ideas of ζ = 0.30 in the extended model, again re-estimated. The
responses are in percentage deviations from the balanced growth path.
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