The Contribution of High-Skilled Immigrants to Innovation in the United States

Shai Bernstein ¹ Rebecca Diamond ² Abhisit Jiranaphawiboon ² Tim McQuade ³ Beatriz Pousada ²

¹Harvard Business School ²Stanford University

³Berkeley

November 1, 2024

How important are immigrants to US innovation?

- Innovation, technology progress: key drivers of growth (Romer (1990); Aghion and Howitt (1992))
- Suggestive evidence immigrants large contributor to US innovation:
 - 23% of STEM occupations (ACS, 2016)
 - 26% of US-based Nobel winnners

• What is the contribution of Immigrants to Innovation in the U.S.?

- Despite large interest, data constraints on individual immigration status limits ability to answer this question
- Little is known about immigrants' **indirect effects** on US innovation:
 - Collaborations between immigrants and US-born inventors may allow knowledge sharing, jointly increasing innovation of both groups (Moser et al. (2014))

Empirical Challenges

(19) United States

(12) Patent Application Publication Musabji et al.

(54) METHOD OF OPERATING A NAVIGATION SYSTEM USING IMAGES

- (71) Applicant: Navteq North America, LLC, Chicago, IL (US)
- (72) Inventors: Adil M. Musabij, Glendale Heights, IL. (US); Jason Borak, Lombard, IL (US); James D. Lynch, Chicago, IL (US); Narayanan Alwar, South Barrington, IL (US); Jon D. Shutter, Chicago, IL (US)
- (73) Assignee: Navteq North America, LLC, Chicago, IL (US)
- (21) Appl. No.: 14/272,045
- (22) Filed: May 7, 2014

Related U.S. Application Data

(63) Continuation of application No. 13/279,537, filed on Oct. 24, 2011, now Pat. No. 8,751,156, which is a continuation-in-part of application No. 12/879,178, filed on Sep. 10, 2010, now Pat. No. 8,301,372, which

(10) Pub. No.: US 2014/0244159 A1 (43) Pub. Date: Aug. 28, 2014

is a continuation of application No. 12/253,488, filed on Oct. 17, 2008, now Pat. No. 7,818,124, which is a continuation of application No. 10/880,815, filed on Jun. 30, 2004, now Pat. No. 7,460,953.

Publication Classification

(51)	Int. Cl. <i>G01C 21/36</i>	(2006.01)
(52)	U.S. Cl.	
	CPC	
	USPC	701/428

(57) ABSTRACT

A navigation system comprises a processor, a geographic database and a guidance application executable on the processor. The guidance application obtains a data from the geographic database and obtains a photographic image. The guidance application overlays an advertisement route highlight on said photographic image. The advertisement route high highlight graphically illustrates a path corresponding to a route and a direction of travel for the route. The advertisement route highlight includes a series of advertisement decals.

We bring new data to these questions

Utilize novel data and a new approach to identify individuals' immigrant status:

- Infutor: address aggregator covering 300 million adults over past 30 years (Diamond et al. 2018).
 - Provides information on names, year of birth, address history, SSN.
- A combination of SSN and year of birth identifies immigrants:
 - Infer SSN assignment year from first 5-digits of SSN
 - Natives assigned SSN during their youth
 - Identify immigrants who received SSN after 19th birthday
 - Cross-sectional variation in immigrant shares across US counties has R² of around 90%.
- Merge immigrant status with the universe of patents (1990-2016) using name/address: link 70% of inventors

Research Questions

Our goal is to "take stock" of current role of immigrants in US innovation

- 1 Describe productivity differences between immigrants and natives
 - Do immigrants/natives have different life-cyle innovation output?
 - Do immigrants bring to the U.S. unique knowledge and skills?
- **2** Quantify indirect effects of immigrants/natives through collaboration externalities
 - Estimate causal effects of immigrant/natives on immigrant native co-authors
 - Use early death of prior collaborator, estimate impact on co-authors subsequent patent production (Jaravel et al. (2018))
- **3** Quantify aggregate contribution of immigrants to US innovation, accounting for external effects on native innovation
 - Estimate innovation production function using collaborator death estimates

Data

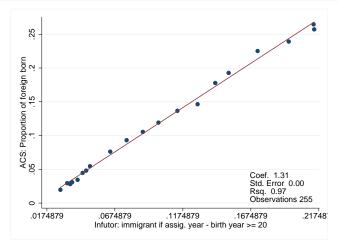
1. Innovation

- NBER Data Project and Google Patents
- Roughly 800 thousand inventors from 1990-2016

2. Infutor Database

- Aggregator of address history data using many sources, including phonebooks, magazine subscriptions, and credit header files.
- Complete address history for more than 300 million US residents (78% of US pop)
- Includes complete names, age, gender, and SSN.

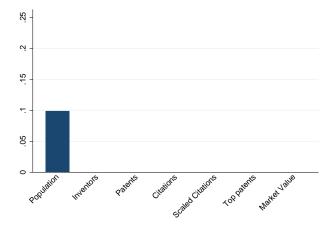
Patent data were linked to infutor data by inventor name, city, and state at time of patent application, with 70% match rate.


Identifying Immigrants

• The SSN structure (between 1937-2011):

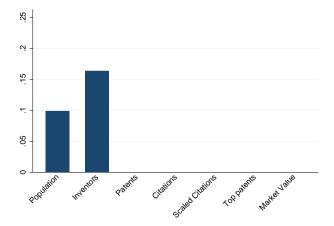
- SSA provides the month and year in which group numbers began to be issued ("High Group List")
 - Designed to validate issued SSNs and prevent fraud
- We verify accuracy and consistency of group numbers based on latest year of birth within a group number
- Classify individuals as immigrants if received SSN after age 20 (or higher)

ACS Validation: State-level immigrant proportions (45-50 years old)

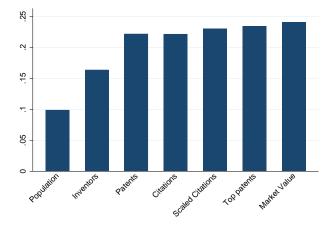

Note: $ACS_{i,2000} = \alpha + \beta Infutor_{i,2000} + \varepsilon_{i,2000}$, immigrants are classified for assignment age>=20. ACS has roughly 31% more immigrants, when focusing on 45-50 age group. Department of Homeland Security estimates that 34% of immigrants were illegal in 2014.

Bernstein et al.

Widely used measures in the literature

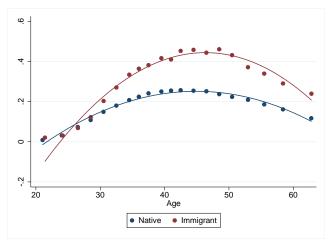

- Innovative scale number of granted patents
- Patent quality
 - Citation counts per patent proxy for technological contribution (Hall et al. 2005, Kogan et al. 2017)
 - Rely on 3-year citation horizon (or 5-year)
 - Scale citation counts by the average number of cites within a given technology class and year.
 - 2 Top patents top 10% of citations within tech class and year
- Economic importance of patents stock market reaction (Kogan et al. 2017), imputed for private firms

Immigrants Contribution to Innovation 1976-2012


Note: Innovation shares are apportioned by team size. Relative to immigrant inventors share in the population, they contribute 40% more in terms of scaled citations, and 47% more in terms of economic value of innovation (based on Kogan et al. 2017).

Immigrants Contribution to Innovation 1976-2012

Note: Innovation shares are apportioned by team size. Relative to immigrant inventors share in the population, they contribute 40% more in terms of scaled citations, and 47% more in terms of economic value of innovation (based on Kogan et al. 2017).


Immigrants Contribution to Innovation 1976-2012

Note: Innovation shares are apportioned by team size. Relative to immigrant inventors share in the population, they contribute 40% more in terms of scaled citations, and 47% more in terms of economic value of innovation (based on Kogan et al. 2017).

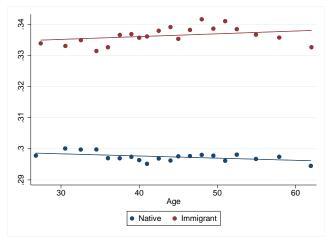
Productivity over the Life-Cycle

Annualized Adjusted Citations Weighted Number of Patents

Note: Binscatters plot relationship between innovative productivity measure and inventors age

Attempting to Explain Productivity Gaps Annualized Number of Patents

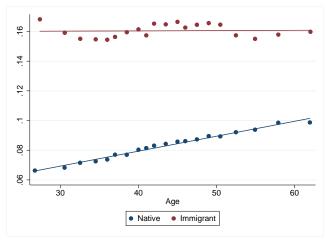
	(1)	(2)	(3)	(4)	(5)	(6)
Immigrant	0.093^{***} (0.002)	0.092^{***} (0.002)	0.071^{***} (0.002)	0.062^{***} (0.002)	0.071^{***} (0.002)	0.063^{***} (0.002)
Observations	15,714,917	15,714,917	15,714,906	$15,\!192,\!932$	15,709,593	15,187,669
Year FE	yes	yes	yes	yes	yes	no
YOB FE	no	yes	yes	yes	yes	yes
County FE	no	no	yes	no	no	no
County \times Tech FE	no	no	no	yes	no	no
County \times Year FE	no	no	no	no	yes	yes
Tech \times Year FE	no	no	no	no	no	yes


Panel A: Annual Number of Patents

Note: gap remains even after the addition of granular controls

Question: Do immigrants bring unique knowledge to US innovation markets?

- Immigrants may be well-positioned to import global knowledge and integrate foreign ideas with US-based knowledge
- Theories of human capital accumulation suggest that new ideas can be generated as novel combinations of existing material
 - Usher, 1954; Becker, 1982;Weitzman, 1998


Global Knowledge Markets Share of Foreign Backward Citations

Note: Reliance on foreign technologies in own patent production

Global Knowledge Markets

Share of Patents Collaborated with Foreign Inventors

Note: Collaboration with foreign inventors in own patent production

- Do immigrants create significant innovation spillovers on US-born innovators, increasing total US innovation?
- Challenge: endogenous team formation and collaborative research efforts
- Ideal experiment:
 - Explore implications of an exogenous end to an on-going collaboration
 - Do such disruptions lead to differential effects when triggered by immigrants versus natives?

Identification strategy:

- Exploit pre-mature deaths occur before or at the age of 60
- Causal effect is identified through a difference-in-differences setting

Data Construction

- Deceased inventors are identified from the Social Security Death Master File (DMF)
- Match 1-1 placebo deceased inventors based on:
 - Immigrant status, age at death, the cumulative number of patent applications, year of death, and cumulative number of coauthors, grouped into ventiles.
- There are 9,405 real deceased inventors and placebo deceased inventors.

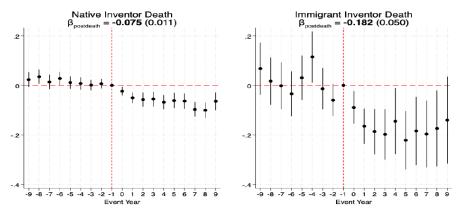
Matched Sample Comparisons

	Real Deceased			Placebo Deceased			
	Mean	Median	Std. Dev.	Mean	Median	Std. Dev	
Age	51.13	53	7.05	51.13	53	7.05	
Year	2,004.42	2,005	4.89	2,004.42	2,005	4.89	
Immigrant status	0.10	0		0.10	0		
Cumulative patents	3	2	2.65	3	2	2.65	
Co-authors	3.45	2	4.35	3.18	2	3.51	
Team size	3.37	3	2.20	3.32	3	2.49	
Adjusted citations	3.97	1.19	9.38	3.72	1.05	10.74	
Top patents	0.50	0	1.40	0.47	0	1.48	
Economic Value	76.11	23.11	265.43	64.50	20.79	189.51	
Female	0.07	0		0.10	0		
Sample size	3,947			155,711			

Panel A: Real vs. Placebo Deceased Demographics

Matched Sample Comparisons - Co-authors

	Real Deceased			Placebo Deceased		
	Mean	Median	Std. Dev.	Mean	Median	Std. Dev.
Age	48.37	49	16.61	46.56	48	20.58
Immigrant status	0.15	0		0.20	0	
Co-patents pre-treat	1.91	1	2.26	1.87	1	2.26
Cumulative patents	8.63	3	20.46	6.95	3	16.06
Adjusted citations	12.58	3.24	35.70	10.07	2.39	29.09
Top patents	1.65	0	4.79	1.30	0	3.80
Economic Value	209.40	49.97	585.34	165.03	39.44	539.83
Female	0.10	0		0.11	0	
Sample size	$15,\!471$	71 369,509				


Panel B: Real vs. Placebo Co-Inventor Characteristics

Treatment Effects

Dependent Variable:	Nu	umber of Pate	nts	Adjusted Citations		
	All (1)	Immigrant (2)	US-born (3)	All (4)	Immigrant (5)	US-born (6)
Post Death	-0.087*** (0.011)	-0.182*** (0.050)	-0.075^{***} (0.011)	-0.154*** (0.015)	-0.337*** (0.063)	-0.130*** (0.015)
Control Post Mean	0.850	1.111	0.815	1.049	1.465	0.993
Percent Change	-10.3%	-16.3%	-9.2%	-14.7%	-23.0%	-13.1%
Match Group \times Event Year FE	yes	yes	yes	yes	yes	yes
Individual FE	yes	yes	yes	yes	yes	yes
R^2	0.560	0.573	0.557	0.366	0.319	0.377
Number of Deceased Inventors	$159,\!658$	8,017	$151,\!641$	159,658	8,017	$151,\!641$
Observations	6,769,647	$502,\!103$	$6,\!267,\!544$	6,769,647	$502,\!103$	$6,\!267,\!544$

Positive Externalities and Spillovers

Annualized Number of Patents

Note: Specifications include co-inventor and year fixed effects:

$$Y_{it} = \sum_{k=-9}^{9} \beta_k^{real} \mathbf{1}_{L_{it}^{real}=k} + \sum_{k=-9}^{9} \beta_k^{all} \mathbb{1}_{L_{it}^{all}=k} + \sum_{m=1976}^{2012} \gamma_m \mathbb{1}_{t=m} + \alpha_i + \epsilon_{it}$$

Bernstein et al.

Immigrants and Innovation

Mechanisms Driving Immigrant Effects

What drives the gap between spillovers of immigrants and natives?

- Control for additional dimensions of observable treatment effect heterogeneity. Can we explain the gap?
- Treatment effect heterogeneity based on: inventor's age, year of death, cumulative patents and citations, average coauthors' ages, average coauthors' cumulative patents and citations, collaboration recency, number of unique prior coauthors, number of co-patents, similarity in prior work, number of local patents per-capita.

Finding:

Gap between immigrants and natives grows slightly larger suggests there is something unique to immigrants

Controlling for Heterogeneity

Dependent variable:	Number of Patents (1)	Scaled Citations (2)	Top Patents (3)	Economic Value (4)
Panel A. Differentials Befor	e Controllin	g for Treat	ment Effe	ect Heterogeneity
	-0.1065	-0.2072	-0.0547	-1.4923
	(0.0496)	(0.0620)	(0.0129)	(0.8085)
Panel B. Differentials After	Controlling	for Treat	nent Effe	ct Heterogeneity
	-0.1584	-0.2425	-0.0649	-1.6927
	(0.0491)	(0.0623)	(0.0126)	(0.7904)
Panel C. Absolute Diff	erence betw	een Estima	tes in Pa	nels A and B
	0.0518	0.0352	0.0101	0.2004
	(0.0136)	(0.0159)	(0.0035)	(0.2335)

Findings suggest that immigrants have substantial contributions to US innovation:

 Both directly through their own output and indirectly through positive externalities/spillovers onto their collaborators.

Team vs General Human Capital:

- Lost productivity from destroying team that would have produced patents (Team Specific)
- Lost productivity even among teams that never involved dying inventor (General
- Use simple structural framework to decompose these channel, quantify aggregate immigrant contribution

Decomposing Immigrants Contribution

Inventor i at time t has general human capital h_{it}:

$$h_{it} = \underbrace{A_{it}}_{it} \underbrace{(1 + N_{it,nat})^{\beta_{nat}}}_{it} \underbrace{(1 + N_{it,imm})^{\beta_{imm}}}_{it}$$

ability-direct native-spillovers immigrant-spillovers

Decomposing Immigrants Contribution

Inventor i at time t has general human capital h_{it}:

$$h_{it} = \underbrace{A_{it}}_{\text{ability-direct}} \underbrace{(1 + N_{it,nat})^{\beta_{nat}}}_{\text{native-spillovers}} \underbrace{(1 + N_{it,imm})^{\beta_{imm}}}_{\text{immigrant-spillovers}}$$

• Team *j* made up of a set of *J* members at time *t*. Team-specific human capital *h_{jt}* :

$$h_{jt} = \left(\prod_{i \in J_j} h_{it}\right)^{\frac{1}{|J_j|}}$$

Decomposing Immigrants Contribution

Inventor i at time t has general human capital h_{it}:

$$h_{it} = \underbrace{A_{it}}_{\text{ability-direct}} \underbrace{(1 + N_{it,nat})^{\beta_{nat}}}_{\text{native-spillovers}} \underbrace{(1 + N_{it,imm})^{\beta_{imm}}}_{\text{immigrant-spillovers}}$$

• Team j made up of a set of J members at time t. Team-specific human capital h_{jt}:

$$h_{jt} = \left(\prod_{i\in J_j} h_{it}\right)^{\frac{1}{|J|}}$$

Innovation output at time t by team j, Y_{jt} :

$$Y_{jt} = \left(1 - \beta^{death} \mathbb{1}_{jt}^{death}\right) h_{jt} g(|J_j|) \varepsilon_{jt}$$

- *N*_{it,k} :number of unique prior co-authors
- *A_{it}* :individual idiosyncratic innovative productivity
- β_m general human capital productivity spillovers from collaboration
- β^{death} 1^{death}: team-specific human capital loss from death
- g(|J_j|) : productivity benefit of team size
- ε_{jt} : team-specific idiosyncratic productivity

General Human Capital Effects

Taking first order taylor expansion around base mean:

$$\frac{\left(\frac{Y_{jt}-\bar{Y}}{\bar{Y}}\right)_{j\in\mathcal{J}_{\mathbf{1}}}}{\sum_{j\in\mathcal{J}_{\mathbf{1}}}} = \beta_{nat} \underbrace{\left(\frac{N_{j,nat}-\bar{N}_{nat}}{1+\bar{N}_{nat}}\right)_{j\in\mathcal{J}_{\mathbf{1}}}}_{\text{change in patient sequences}} + \beta_{imm} \underbrace{\left(\frac{N_{i,imm}-\bar{N}_{imm}}{1+\bar{N}_{imm}}\right)_{j\in\mathcal{J}_{\mathbf{1}}}}_{\sum_{j\in\mathcal{J}_{\mathbf{1}}}}$$

change in output due to death

change in native coauthors

change in immigrant coauthors

- Only study teams \mathcal{J}_1 , that do not contain dying/placebo dying inventor. Impact only through general human capital
- Changes in general human capital reflect changes in number of (living) co-authors (native/immigrant) production function parameters
- Estimate changes in number of immigrant/native co-authors due to premature death of an immigrant/native.
- Repeat estimate for teams containing dying inventor. Excess productivity loss here due to team-specific human capital

Panel A. Parameters

Parameter:	eta^{imm}	β^{nat}	eta^{death}	
	(1)	(2)	(3)	
	0.718	0.290	0.166	
Governing:	human capital	human capital	inventor death	
Inventor:	$\operatorname{immigrant}$	US-born	any	

• Team-Specific human capital loss only 16% larger than general human capital effects

Question: What is the overall contribution of immigrants on US Innovation?

We use simple structural framework to decompose immigrant contribution:

- US-born production without immigrants account for **60%** of aggregate innovation
- Immigrant output without US-born accounts for 15% of aggregate innovation
- Credit immigrants for increase in US-born output due to immigrant collaboration: Immigrants account for 32% aggregate innovation
- Credit US-born for increase in immigrant output due to US-born collaboration: US-born account for 68% of aggregate innovation

Using novel approach to identify immigrant status we find that:

- Immigrant contribution to innovation is disproportionate relative to their share of the inventor population
- Immigrants generate significant spillovers on native inventors. Immigrants create larger spillovers
- 32% of aggregate US innovation since 1990 can be attributed to immigrants, 39% more than their observed direct output
- 4 Expanding high-skill immigration with unique knowledge backgrounds likely increases US innovation overall