Immigration, Innovation, and Growth

Stephen J. Terry University of Michigan and NBER

> Thomas Chaney USC and CEPR

Konrad B. Burchardi IIES Stockholm and CEPR

Lisa Tarquinio University of Western Ontario

Tarek A. Hassan Boston University, NBER, and CEPR

October 2024

Motivation

 Canonical models suggest immigration should cause innovation, economic dynamism, and growth through new ideas, more effort, higher demand.

> A key challenge for identification: Omitted factors jointly determine immigration, AND innovation, dynamism, and growth.

This paper:

- Construct plausibly exogenous immigration shocks to US counties using 130 years of census data.
- Estimate causal effect on local innovation, wages.
- Interpret through the lens of quantitative growth model.

Main Contributions

- 1. Isolate plausibly exogenous shocks to county-level immigration 1975-2010.
- 2. Immigration causes a significant increase in local innovation and local wage growth.
 - The positive effect of immigration on wages increasing in natives' education.
 - The impact of immigration increases significantly with immigrants' schooling level.
- 3. Validate causal identification in a structural model of immigration and growth.

Related Literature

- Endogenous growth & innovation mechanisms, Spatial growth models
 Aghion & Howitt 1992, Romer 1990, Peretto 1998, Young 1998, Jones 1995, Jones, et al. 2017, Desmet et al. 2018, Peters 2023
 - $\rightarrow\,$ Test short-term reduced-form predictions at county level, identify size of local scale effects
- Empirical work on the effects of immigration Altonji & Card 1991, Borjas 1999, Sequeira, Nunn, & Qian 2018, Akcigit, et al. 2017, Peters 2017, Peri, et al. 2022
 - $\rightarrow\,$ Identify effects on local innovation, dynamism, and income growth.
- General issues with Shift-Share designs Borusyak et al., 2021; Goldsmith-Pinkham et al., 2020; Adao et al. 2019.
 - $\rightarrow\,$ Show a path to resolving identification issues relating to "endogenous shares"

Data

Immigration and Ancestry

- IPUMS datasets from US Census, 1880-2010:
 - $l_{o,d}^t =$ # individuals in US county *d* born in foreign country *o* who immigrated between *t* and t-1.

 $A_{o,d}^t = \#$ of individuals in *d* with *o* ancestry at time *t*

Innovation

USPTO Patent Microdata 1975-2010: number of successful patent applications in county *d* between time *t* – 1 and *t*

Wages

- BLS Quarterly Census of Empl. and Wages, 1975-2010: wages per worker in county d at time t
- IPUMS Wages, 1980-2000: wages per native non-mover worker in county d at time t

Identification: The Problem

Equation of interest:

$$Y_d^t - Y_d^{t-1} = \delta_t + \delta_s + \beta I_d^t + \epsilon_d^t$$

- ▶ But: Migrants are likely drawn to places that are innovative. → OLS biased: $cov(I_d^t, \epsilon_d^t) \neq 0$. Need instrument.
- Conventional Card (2001)-type instrument: interaction of 'push factor' with 'social pull' factor in migration

$$I_{o,d}^{t} = \alpha + \dots + \gamma \underbrace{I_{o}^{t}}_{\text{push}} \times \underbrace{A_{o,d}^{t-1}}_{\text{social}} + \nu_{o,d}^{t}$$

- But: Ancestry patterns likely correlated with unobserved factors linked to innovation (e.g.: Indian engineers in Silicon Valley).
- ⇒ Combine Card instrument with an instrument for ancestry composition of US counties (Burchardi-Chaney- Hassan'19).

- Add economic pull factor: Migrants choose destinations attractive to the average migrant arriving at the time.
- The stock of ancestry cumulates as a function of historical immigration flows. Iterate to solve.
 - → Instrument Ancestry with historical interactions of push and economic pull factors.
- ▶ To be extra safe, use broad leave-out categories, e.g.
 - Push: all migrants leaving o but settling in another region
 - Pull: fraction of European migrants settling in d

- Add economic pull factor: Migrants choose destinations attractive to the average migrant arriving at the time.
- The stock of ancestry cumulates as a function of historical immigration flows. Iterate to solve.
 - → Instrument Ancestry with historical interactions of push and economic pull factors.
- ▶ To be extra safe, use broad leave-out categories, e.g.
 - Push: all migrants leaving o but settling in another region
 - Pull: fraction of European migrants settling in d

- Add economic pull factor: Migrants choose destinations attractive to the average migrant arriving at the time.
- The stock of ancestry cumulates as a function of historical immigration flows. Iterate to solve.
 - $\rightarrow\,$ Instrument Ancestry with historical interactions of push and economic pull factors.
- ▶ To be extra safe, use broad leave-out categories, e.g.
 - Push: all migrants leaving *o* but settling in another region
 - Pull: fraction of European migrants settling in d

$$\mathbf{A}_{o,d}^{t-1} = \dots + \sum_{\tau=1880}^{t-1} \beta^{\tau} \underbrace{I_{o}^{\tau}}_{\text{push economic}} \underbrace{I_{d}^{\tau} / I^{\tau}}_{\text{economic}} + u_{o,d}^{t}$$

- Add economic pull factor: Migrants choose destinations attractive to the average migrant arriving at the time.
- The stock of ancestry cumulates as a function of historical immigration flows. Iterate to solve.
 - → Instrument Ancestry with historical interactions of push and economic pull factors.
- To be extra safe, use broad leave-out categories, e.g.
 - Push: all migrants leaving o but settling in another region
 - Pull: fraction of European migrants settling in d

Push Factor

Top non-European origin countries

Notes: The figure shows the share of non-European immigration by origin country, breaking out migrants from the largest senders of migrants to the U.S. overall.

Destinations of Immigrants Pre 1880

Destinations of Immigrants 1880-1890

Destinations of Immigrants 1890-1900

Destinations of Immigrants 1900-1910

Destinations of Immigrants 1910-1920

Destinations of Immigrants 1920-1930

Destinations of Immigrants 1930-1950

Destinations of Immigrants 1950-1960

Destinations of Immigrants 1960-1970

Destinations of Immigrants 1970-1980

Destinations of Immigrants 1980-1990

Destinations of Immigrants 1990-2000

Destinations of Immigrants 2000-2010

Construct an Instrument for I_d^t in 3 steps

Step 1 Construct instrumented ancestry as

$$\hat{A}_{o,d}^{t-1} = \sum_{\tau=1880}^{t-1} \hat{\beta}_{r(d)}^{\tau} \left(I_{o,-r(d)}^{\tau} \frac{I_{Euro,d}^{\tau}}{I_{Euro}^{\tau}} \right)^{\perp}$$

Step 2 Use this exogenous variation in ancestry to fit a recursive model of migration (similar to Card shift-share).

$$I_{o,d}^{t} = X_{o,d}^{\prime}\beta + \gamma^{t}[\hat{A}_{o,d}^{t-1} \times \tilde{I}_{o,-r(d)}^{t}] + \nu_{o,d}^{t}$$

Step 3 Sum predicted immigration across origins to isolate an exogenous **immigration shock** to county *d* at time *t*.

$$\hat{I}_{d}^{t} = \sum_{o} \hat{\gamma}^{t} [\hat{A}_{o,d}^{t-1} \times \tilde{I}_{o,-r(d)}^{t}].$$

Step 1: Time Step 1: County Step 2: Table Step 3: Maps

Identifying Assumption

Any confounding factors that drive temporary increases in a given US county's innovation post-1975 ($\epsilon_{d,t}$) do not systematically correlate with pre-1975 immigration from a given origin to other regions within the US ($I_{o,-r(d),\tau}$) interacted with the simultaneous settlement of European migrants in that US destination ($I_{Europe,d,\tau}/I_{Europe,\tau}$).

Immigration and Innovation post 1970

	OLS	OLS	IV	IV
	Δ^{5j}	^{yr} Patent F	lows Per Ca	pita
Immigration ^t _d	0.200** (0.096)	0.309 (0.197)	0.122*** (0.045)	0.181** (0.087)
Ν	18,846	18,846	18,846	18,846
F-Stat			911	85
Geography FE Time FE	State Y	County Y	State Y	County Y

Notes: Standard errors are clustered by state.

▶ +12k migrants (1 s.d.) \rightarrow +32% innovation (rel. to mean).

Robustness

- Obtain almost identical results when we use other reasonable leave-out categories or hold constant A¹⁹⁷⁵_{od}.
- Do not suffer from issues relating to correlation between pre-existing shares and the error term (Adão et al., 2018).
- Results not driven by specific origins.
- Results hold with county FE, "bad" controls.
- Use population growth as endogenous variable.
- Alternative functional forms.

Effects on Local Wages

	∆ ^{5yr} Average Annual Wage		∆ ^{10yr} Avg. Annual Wage All Native Non-Movers
	(1)	(2)	(3)
Immigration ^t	0.149*** (0.030)	0.217** (0.098)	0.108*** (0.034)
Ν	21,977	21,976	6,274
First Stage F-Stat	903	37	936
AR Wald F-Test p-value	0.000	0.039	0.006
Geography FE Time FE	State Yes	County Yes	State Yes

Notes: Standard errors are clustered by state.

► One S.D. increase in adult immigration → 5% increase in local average wage.

Effects on Local Inventors

		Δ^{5yr} Pate	nt Flows Per	[.] Capita
	All Inventors	Domestic Inventors	Immigrant Inventors	Teams of Domestic & Immigrant Inventors
	(1)	(2)	(3)	(4)
Immigration $_d^t$	0.085** (0.037)	0.069** (0.030)	0.003*** (0.001)	0.009** (0.004)
Ν	18,846	18,846	18,846	18,846
First Stage F-Stat	911	911	911	911
AR Wald F-Test p-value	0.037	0.038	0.004	0.027
Share of Patents Geography FE Time FE	100% State Yes	92% State Yes	1% State Yes	3% State Yes

Notes: Standard errors are clustered by state.

- Domestic inventors: those whose first patent is filed in US.
- At least some of the effect on innovation driven by more inventions by domestic US inventors.

Effects on Local Wages & Inequality

		Δ^{10yr} Wages					
	All Native Non-Movers (1)	Less than High School (2)	High School (3)	1 to 3 Years of College (4)	4 Years of College (5)	5+ Years of College (6)	
$Immigration_d^t$	0.108*** (0.034)	-0.007 (0.007)	0.017*** (0.005)	0.029** (0.011)	0.085*** (0.025)	0.247*** (0.085)	
Ν	6,274	6,274	6,274	6,274	6,274	6,274	
First Stage F-Stat	936	936	936	936	936	936	
AR Wald F-Test p-value	0.006	0.323	0.001	0.021	0.003	0.010	
Geography FE Time FE	State Yes	State Yes	State Yes	State Yes	State Yes	State Yes	

Notes: Standard errors are clustered by state.

 Largest effects on wages of highly skilled natives. No detectable effect on wages of workers without HS degree.

Education & Immigration's Effect on Innovation

- Generalize IV to instrument separately for effect of educated migrants.
- Leverage dramatic differences in education across origins and over time.
- Run a separate first stage

Education^t_d =
$$\delta_s + \delta_t + \sum_{o=1}^{20} \kappa_o \hat{l}_{o,d}^t + \nu_d^t$$

where $Education_d^t$ is the total number of years of education of adult immigrants to d at t

to then disentangle in the second stage

$$Y_d^t - Y_d^{t-1} = \delta_s + \delta_t + \beta \widehat{Immigration_d^t} + \gamma \widehat{Education_d^t} + \epsilon_d^t$$

Education & Innovation

	∆ ^{5yr} Patent Flows Per Capita		∆ ^{5yr} Avg. Annual Wage	
	(1)	(2)	(3)	(4)
Immigration $_d^t$	0.254*** (0.082)		0.298*** (0.058)	
$1\{\text{Low Avg. Years Education}\} \times \text{Immigration}_d^t$		-1.671 (5.620)		-0.264 (0.259)
$1 \{ Medium Avg. Years Education \} \times Immigration_d^t$		0.105* (0.062)		0.183*** (0.064)
$1 \{ High \; Avg. \; Years \; Education \} \times Immigration_d^t$		1.705** (0.830)		1.637*** (0.360)
Average Years Education $_d^t \times Immigration_d^t$	0.281*** (0.094)		0.251*** (0.055)	
Ν	18,846	18,846	21,977	21,977

Notes: All specifications include state and time fixed effects. Standard errors are clustered by state.

Effect of highly educated migrants (s.d. above mean) approx 5× and 4× larger than (local) average effect.

Structural Model

Regional growth model with endogenous immigration and ancestry accumulation:

- 1. rationalize the impact of immigration on innovation, which flows through a labor supply channel,
- 2. exploit the IV results for identification of the elasticity of innovation to researchers,
- 3. aggregate the model to quantify the macro impact of immigration to the US in recent decades, and
- 4. show our instruments are orthogonal to confounding factors within the model.

Find a large contribution of immigration to US growth in recent decades, totaling on the order of 5% of income per capita.

Model Details Shock Moments IRF INA Identification

Conclusion

- We study the medium-term impact of immigration on innovation, dynamism, and growth at the local level.
- Identify plausibly exogenous shocks to immigration at the county level 1975-2010.
- Find that more immigration causes
 - more innovation (patents per person)
 - more dynamism and creative destruction
 - higher wages for native non-movers, particularly high-skilled ones.
- Highly educated immigrants boost innovation by more.
- Immigration causes positive spillovers to nearby areas.
- Structural estimation suggests reasonably large effects of immigration on aggregate economic growth.

THANK YOU

BACKUP SLIDES

Step 1: Effect of historical push-pull on Ancestry today

Notes: Red lines give 95% confidence intervals. Standard errors are clustered at the origin country level. (F-stat 32,645.9, R² 0.5041) Return Add'l Slides

Step 1: Fit of Predicted Ancestry

Notes: This figure plots actual ancestry in 2010 against predicted ancestry, with the size of each circle indicating the log number of observations in a given bin of predicted ancestry. The labeled counties are those with the highest number of individuals declaring a given ancestry in 2010.

Instrument Construction: Step 2

		I	mmigration ^t o,	d	
	(1)	(2)	(3)	(4)	(5)
$\hat{A}_{o,d}^{1975} imes ilde{l}_{o,-r(d)}^{1980}$	0.0036***	0.0036***	0.0035***	0.0035***	0.0035***
A1980 71985	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$A_{o,d}^{iodd} \times I_{o,-r(d)}^{iodd}$	(0.0016	(0.0016)	(0.0016)	(0.0016)	(0.0016
A1095 71000	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$A_{o,d}^{1333} \times I_{o,-r(d)}^{1330}$	0.0018***	0.0018***	0.0018***	0.0018***	0.0018***
A1000 51005	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$A_{o,d}^{1990} \times I_{o,-r(d)}^{1995}$	0.0005***	0.0005***	0.0005***	0.0005***	0.0005***
A	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\hat{A}_{o,d}^{1995} \times \tilde{I}_{o,-r(d)}^{2000}$	0.0004***	0.0004***	0.0004***	0.0004***	0.0004***
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\hat{A}_{a,d}^{2000} \times \tilde{I}_{a-r(d)}^{2005}$	0.0002***	0.0002***	0.0002***	0.0002***	0.0002***
·;· · · (·)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
$\hat{A}^{2005}_{0,d} \times \tilde{I}^{2010}_{0,r(d)}$	0.0002***	0.0002***	0.0002***	0.0002***	0.0002***
0,0 0,- <i>1</i> (0)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)
It fund				0.0109***	
Euro,u				(0.0031)	
$I_{0,-r(d)}^{t} \frac{I_{Euro,d}^{t}}{I_{-}^{t}}$					0.3913**
Euro					(0.1558)
Ν	3,583,881	3,583,881	3,583,881	3,583,881	3,583,881
R ²	0.656	0.657	0.709	0.709	0.709
Distance, Latitude Diff.	no	yes	yes	yes	yes
Region-Country FE	no	no	yes	yes	yes
County-Continent FE	no	no	yes	yes	yes
Time FE	no	no	yes	yes	yes

Notes: Standard errors are clustered by country.

Step 3: Immigration Shock \hat{l}_d^{1980}

Immigration Shock \hat{I}_d^{1985}

Immigration Shock \hat{I}_d^{1990}

Immigration Shock \hat{I}_d^{1995}

Immigration Shock \hat{I}_d^{2000}

Immigration Shock \hat{I}_d^{2005}

Immigration Shock \hat{I}_d^{2010}

First-stage: County-Level Population Change

	Δ Population ^t _d				
	(1)	(2)	(3)		
Immigration Shock (\hat{l}_d^t)	1.897*** (0.181)	1.888*** (0.186)	2.081*** (0.263)		
Ν	18,846	18,840	18,846		
R ²	0.324	0.340	0.804		
Geography FE Time FE State-Time FE	State Yes No	State Yes Yes	County Yes No		

Notes: Standard errors are clustered by state.

Robustness: Alternative Instruments

	5-Year Difference in Patenting per 100,000					
	(1)	(2)	(3)	(4)		
	Leave-Out Correlated Counties	Leave-Out Own Continent	Ancestry in 1975 only	Stop Push-Pull in 1960		
Adão et al. (2019) First Stage False Rejection Rate (%)	3.8	27.4 Overreject	24.5 Overreject			
Immigration _{d,t}	0.202** (0.084)	0.161 (0.075)	0.163 (0.071)			
N	18846	18846	18846			
First Stage F-Stat	656	695	361			
Geography FE Time FE	State Yes	State Yes	State Yes	State Yes		

Notes: Standard errors are clustered by state.

Robustness: Instrument Construction

	Δ^{5y}	^r Patent Flows Per Cap	t Flows Per Capita ed Immigration Realized Ancestry Shares Shares ard, 2001)				
Specification:	Predicted Ancestry Shares (Baseline)	Realized Immigration Shares (Card, 2001)	Realized Ancestry Shares				
	(1)	(2)	(3)				
Adão et al. (2019) First Stage False Rejection Rate (%)	3.8	27.4 Overreject	24.5 Overreject				
Immigration _{d,t}	0.202** (0.084)	0.161 (0.075)	0.163 (0.071)				
N	18846	18846	18846				
First Stage F-Stat	656	695	361				
Instrument Functional Form:							
Instrumented Ancestry	Yes	No	No				
Push Factor Leave-Out Controls:	Yes	No	No				
Geography FE	State	State	State				
Time FE	Yes	Yes	Yes				

Notes: Standard errors are clustered by state.

Return Add'l Slides

Robustness: Specific Countries

	Difference in Patenting per 100,000 People Post-1980					
	Mexico	China	India	Philippines	Vietnam	
	(1)	(2)	(3)	(4)	(5)	
Panel A: Excluding Giver	Country					
Immigration $_d^t$	0.091*** (0.028)	0.123*** (0.046)	0.122*** (0.045)	0.122*** (0.044)	0.122*** (0.045)	
Ν	18,846	18,846	18,846	18,846	18,846	
First Stage F-Stat	666	1,576	1,267	1,261	1,179	
AR Wald F-Test p-value	0.003	0.015	0.014	0.014	0.014	
Panel B: Including Only (Given Coun	try				
Immigration $_d^t$	0.125*** (0.047)	0.089*** (0.028)	0.145*** (0.039)	0.140** (0.054)	0.125* (0.069)	
Ν	18,846	18,846	18,846	18,846	18,846	
First Stage F-Stat	2,094	535	318	22	2	
AR Wald F-Test p-value	0.015	0.003	0.001	0.000	0.148	
Controls:						
Geography FE	ST	ST	ST	ST	ST	
Lime FE	yes	yes	yes	yes	yes	

Notes: Standard errors are clustered by state.

Robustness: Additional Controls

	5-Year Difference in Patents per 100,000 People for 1980 to 2010				
	(1)	(2)	(3)	(4)	(5)
Immigration $_d^t$	0.122***	0.125**	0.125***	0.106**	0.090**
Population Density (1970)	(0.013)	-0.001 (0.001)	(0.013)	(0.0 10)	(0.000)
Patents per 1,000 People (1975)			-3.377 (2.313)		
Share High School Education (1970)				51.754*** (10.186)	
Share 4+ Years College (1970)					178.858*** (25.375)
Ν	18,846	18,840	18,840	18,846	18,846
First Stage F-Stat	911	2,062	920	945	1,017
AR Wald F-Test p-value	0.014	0.016	0.014	0.018	0.021
Geography FE Time FE	State Yes	State Yes	State Yes	State Yes	State Yes

Notes: Standard errors are clustered by state.

Second Stage: Population Growth and Innovation

5-year Difference in Patenting per 100,000 People Post-1980				
(1)	(2)	(3)		
0.129*** (0.039)	0.125*** (0.041)	0.090*** (0.020)		
18,846	18,840	18,846		
110	103	63		
0.010	0.016	0.000		
IV State yes no	IV State yes yes	IV County yes no		
	5-year D per 100,0 (1) 0.129*** (0.039) 18,846 110 0.010 IV State yes no	5-year Difference in per 100,000 People P (1) (2) 0.129*** 0.125*** (0.039) (0.041) 18,846 18,840 110 103 0.010 0.016 IV IV State State yes yes		

Notes: Standard errors are clustered by state.

Return Add'l Slides

Growth Model Parameters

	Difference in Patenting per 100,000 People Post 1980		IHS of Patenting Post 1975
	(1)	(2)	(3)
Immigration $_d^t$	0.115*** (0.040)	0.598*** (0.105)	
$sq(Immigration_d^t)$		-0.001*** (0.000)	
$IHS(Immigration_d^t)$			1.723*** (0.111)
Ν	18,846	18,846	21,987
First Stage F-Stat (first coefficient)	911	95	94
First Stage F-Stat (second coefficient)		11231	
AR Wald F-Test p-value	0.010	0.000	0.000
Geography FE Time FE	State Yes	State Yes	State Yes

Notes: Standard errors are clustered by state.

Return Add'l Slides

Dynamic Effect of Immigration

	Difference in Patenting per 100,000 People				
	ΔPat_{t-2}^{t-1}	ΔPat_{t-1}^t	ΔPat_{t-1}^{t+1}	ΔPat_{t-1}^{t+2}	
	(1)	(2)	(3)	(4)	
Immigration ^t	-0.104 (0.064)	0.116*** (0.026)	0.414*** (0.128)	0.448** (0.216)	
Ν	15,705	18,846	15,705	12,564	
First Stage F-Stat	80	85	11	7	
AR Wald F-Test p-value	0.061	0.000	0.002	0.004	
Controls:					
Geogrpahy FE	county	county	county	county	
Time FE	yes	yes	yes	yes	

Notes: Standard errors are clustered by state.

Return Add'l Slides

52/33

Origin Countries, Destination Counties, and Ancestry

Origin Countries

- Immigrants come from o = 1, ..., O origin countries.
- The size of the immigration flows grows at constant rate n > 0, and origins are subject to iid push shocks

$$I_{o,t} = (1 + n)^t e^{\nu_{o,t}}, \ \nu_{o,t} \sim N(0, \sigma_{\nu}^2).$$

Destination Counties

- There are d = 1, ..., D potential destination counties.
- Origin-specific ancestry A accumulates within each county via immigration I and domestic migration M:

$$A_{o,d,t+1} = A_{o,d,t}(1-\mu) + I_{o,d,t} + \sum_{d'=1}^{D} M_{o,d',d,t}.$$

• Total labor aggregates across origins: $L_{d,t} = \sum_{o} A_{o,d,t}$.

Immigrants Choose Destinations

Immigrants *i* from origin *o* evaluate expected utility from each destination *d*

$$\mathbb{E}_t \left[W_{d,t+1}^{\lambda} \left(\frac{A_{o,d,t+1}}{A_{o,t+1}} \right)^{1-\lambda} \right] e^{-\tau_{o,d,t}} \eta_{i,d,t},$$

with preferences depending upon

- the expected wage in d, $W_{d,t+1}$,
- the expected ancestry from their own origin o in d, $A_{o,d,t+1}$,
- an iid migration cost shock $\tau_{o,d,t} \sim N(0, \sigma_{\tau}^2)$, and
- an iid migrant taste shock $\eta_{i,d,t} \sim Frechet(\theta)$.

The resulting share of immigration flows in each county follows

$$\frac{I_{o,d,t}}{I_{o,t}} = \frac{\left(E_t \left[W_{d,t+1}^{\lambda} \left(\frac{A_{o,d,t+1}}{A_{o,t+1}}\right)^{1-\lambda}\right]\right)^{\theta} e^{-\theta \tau_{o,d,t}}}{\sum_k \left(E_t \left[W_{k,t+1}^{\lambda} \left(\frac{A_{o,k,t+1}}{A_{o,t+1}}\right)^{1-\lambda}\right]\right)^{\theta} e^{-\theta \tau_{o,k,t}}}$$

Current residents receive a moving shock with probability μ and solve a similar domestic migration problem pinning down $M_{o,d',d,t}$.

Counties Produce Goods & Ideas

Freely traded numeraire final goods output $Y_{d,t} = Z_{d,t}Q_{d,t}L_{Y,d,t}^{\alpha}$ in each county *d* depends on

- ► persistent county-level TFP shocks $\ln Z_{d,t} = \rho \ln Z_{d,t-1} + \epsilon_{d,t}, \quad \epsilon_{d,t} \sim N(0, \sigma_{\epsilon}^2),$
- county-level idea stocks $Q_{d,t}$ linked to new idea flows $N_{d,t}$

$$Q_{d,t} = Q_{d,t-1} + N_{d,t},$$

• and labor $L_{Y,d,t}$ used in goods production.

Production of new ideas $N_{d,t} = L_{N,d,t}^{\gamma} Q_{d,t-1}^{1-\gamma}$ in *d* depends on

- research labor used in ideas production $L_{N,d,t}$, and
- the existing idea stock $Q_{d,t-1}$.

Equilibrium

Equilibrium in the model involves a range of forces including

- 1. labor market clearing within counties driven by the wage $W_{d,t}$,
- 2. researcher demand $L_{N,d,t}$ driven by a patent/idea price $p_{d,t}$,
- 3. endogenous immigration driven by wages and ancestry,
- 4. endogenous domestic migration driven by wages and ancestry, and
- 5. stochastic fluctuations around a balanced growth path driven by population growth at rate *n*.

Note that we do not consider idea flows in our baseline, but we analyze a full-idea spillovers case in the paper with little impact on the short-run link between immigration and innovation.

Return 🚺 Add'l Slides

What Do Immigration Shocks Do?

- An immigration shock increases the supply of labor available for innovation, pushing up patenting and eventually the wage.
- Sign of initial wage response governed by γ .
- Identify γ by targeting the causal effect of immigration on patenting found in the data.

Estimate the Model Targeting our IV Coefficient

Panel A: Moments	Data	Model
IV coeff., patenting _{d,t} on immigration $I_{d,t}$	1.723	1.710
	(0.112)	
Std. deviation, o immigration $I_{o,t}$	0.406	0.386
	(0.028)	
Std. deviation d immigration $I_{d,t}$	0.179	0.167
	(0.011)	
Std. deviation, $o-d$ immigration $I_{o,d,t}$	0.072	0.112
	(0.012)	
Autocorrelation, output per capita $Y_{d,t}/L_{d,t}$	0.954	0.963
	(0.007)	
Autocorrelation, patenting _{d,t}	0.894	0.869
	(0.009)	
Panel B: Estimated Parameters	(0.009) Symbol	Value
Panel B: Estimated Parameters Elasticity, patenting to labor	(0.009) Symbol γ	Value 0.795
Panel B: Estimated Parameters Elasticity, patenting to labor	(0.009) Symbol γ	Value 0.795 (0.038)
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP	(0.009) Symbol γ ρ	Value 0.795 (0.038) 0.856
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP	$\frac{(0.009)}{\text{Symbol}}$ $\frac{\gamma}{\rho}$	Value 0.795 (0.038) 0.856 (0.018)
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP Std. deviation, county TFP shocks	$\begin{array}{c} (0.009) \\ \hline \\ \text{Symbol} \\ \hline \\ \gamma \\ \rho \\ \\ \sigma_{\epsilon} \end{array}$	Value 0.795 (0.038) 0.856 (0.018) 0.019
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP Std. deviation, county TFP shocks	$\begin{array}{c} (0.009) \\ \hline \\ \text{Symbol} \\ \hline \\ \gamma \\ \rho \\ \sigma_{\epsilon} \end{array}$	Value 0.795 (0.038) 0.856 (0.018) 0.019 (0.005)
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP Std. deviation, county TFP shocks Std. deviation, immigration push shocks	$\begin{array}{c} (0.009)\\ \hline\\ \text{Symbol}\\ \hline\\ \gamma\\ \rho\\ \sigma_{\epsilon}\\ \sigma_{\nu} \end{array}$	Value 0.795 (0.038) 0.856 (0.018) 0.019 (0.005) 0.577
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP Std. deviation, county TFP shocks Std. deviation, immigration push shocks	$\begin{array}{c} (0.009)\\ \hline\\ \text{Symbol}\\ \hline\\ \gamma\\ \rho\\ \sigma_{\epsilon}\\ \sigma_{\nu} \end{array}$	Value 0.795 (0.038) 0.856 (0.018) 0.019 (0.005) 0.577 (0.051)
Panel B: Estimated Parameters Elasticity, patenting to labor Autocorrelation, county TFP Std. deviation, county TFP shocks Std. deviation, immigration push shocks Std. deviation, bilateral immigration shocks	$\begin{array}{c} (0.009) \\ \hline \\ \text{Symbol} \\ \hline \\ \gamma \\ \rho \\ \sigma_{\epsilon} \\ \sigma_{\nu} \\ \sigma_{\tau} \end{array}$	Value 0.795 (0.038) 0.856 (0.018) 0.019 (0.005) 0.577 (0.051) 0.535

• Key result: local elasticity of patenting to research labor: 0.795.

Dynamic Responses to Immigration

Immigration's Aggregate Impact

US immigration averaged around 1/6th of population growth after the liberalizing 1965 Immigration & Nationality Act. The model reveals lower innovation and income without this contribution.

Return Add'l Slides

TFP, Bilateral Shocks, and Instrumental Variables

The instrument construction "works" in the model. Our exclusion restriction holds, marking improvement over baseline Card as well as cruder versions of our instrument.

