Adjusters and Casualties: Anatomy of labor market distress

Eric Hanushek, Simon Janssen, Jacob Light, Lisa Simon

Introduction

- Large literature on worker displacement
- Heterogeneity of effects age, education, gender, firm characteristics, industry, occupation, regulations, business cycle
- Key analytical question: what would have occurred without displacement?
- Standard approach: event study/DID with nondisplaced workers
 - Average losses by heterogeneous circumstances
- Our approach: matching/synthetic controls to trace full distribution of losses

Representative existing literature

- Overall closures: Jacobson et al. (1993), Couch and Placzek (2010), Schmieder et al. (2010), Gulyas and Pytka (2022)
- **Education:** Schwerdt et al. (2010), Hanushek et al. (2017), Farber, 2017)
- Gender: Illing et al. (2021)
- **Tenure**: Chan and Stevens (1999), Chan and Huff Stevens (2001)
- Worker-firm match: Moore and Scott-Clayton (2019) Fackler et al. (2021), Graham et al. (2023), Lachowska et al. (2020)
- Firm characteristics: Fackler et al. (2021)
- **Country-specific institutions**: Bertheau et al. (2022), Janssen (2018)
- Business cycles: Davis and von Wachter (2011), Schmieder et al. (2023)

Summary of results

- Loss distributions are bi-modal
 - Outliers drive average losses
 - 20 percent experience no loss
- Observed characteristics explain little
 - Education, age, gender explain < 2 percent
 - Firms have some, but limited impact
- Adjusters and casualties respond very differently

Data and empirical strategy

Data

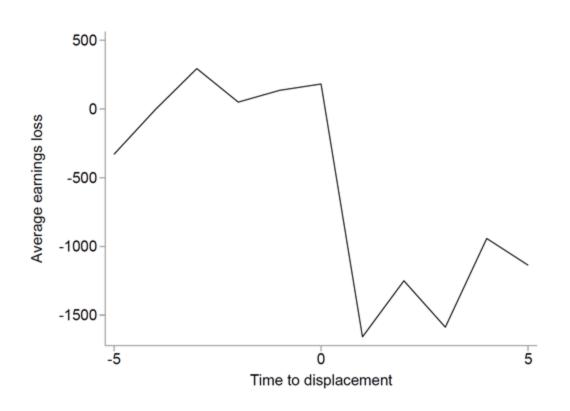
- Integrated Employment Biographies (IEB) [Germany]
- Firm closures
 - West Germany2000-2005

 - Firms with >50 workers
- Workers
 - Age 21-55

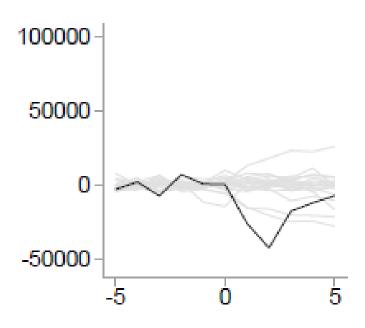
 - 2 years firm tenure
 5 years pre-displacement earnings
 Nonemployment (out of labor force, self-employed, government)

 retained with 0

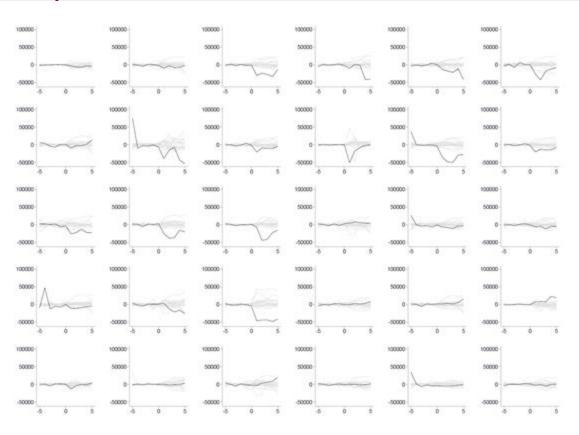
Synthetic control approach

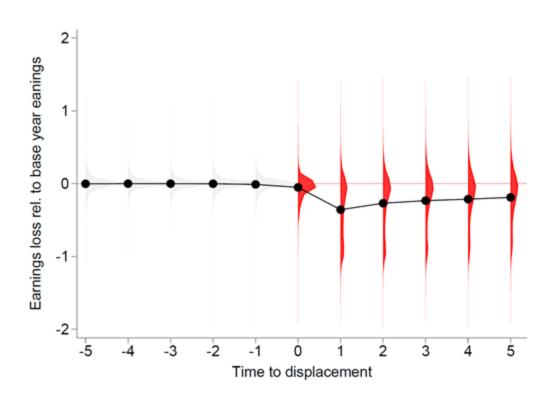

- 1. Identify displaced workers
- 2. Establish donor pool for each worker
 - Group nondisplaced by gender-education-occupation-industry
 - Select 20 workers with lowest RMSQ error in pre-closure income
- Create synthetic control based on four-year pre-closure income
- 4. Calculate earnings losses for five years post-closure
- 5. Repeat #2 to #4 for each displaced worker (≈16,000)

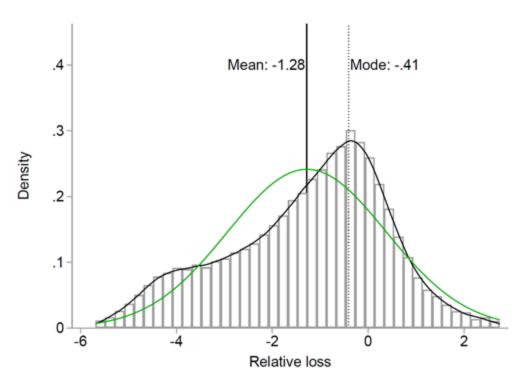
Results


Example: estimating SCs for a small manufacturing firm

- Manufacturing of refractory ceramic material and goods
- 30 employees
 - All men
 - 10 w/o degree; 20 w/ apprenticeship degree
- Mixed occupations
 - 24 in occupation for industrial process and plant engineering for ceramic materials
 - 5 machine builders
 - 1 accountant


Average earnings losses in small manufacturing firm


Estimates of earnings losses for an individual worker


Substantial heterogeneity in earnings losses estimates for workers at sample firm

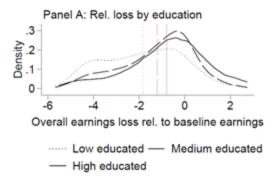
Main result: large variance in estimated earnings losses following firm closure

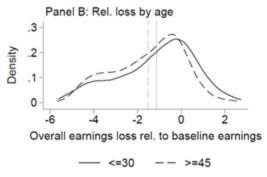
The distribution of cumulative earnings in the five years postlayoff is not normal

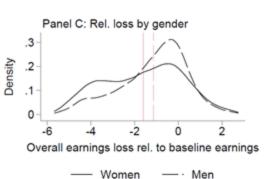
Note: relative loss measured as earnings losses normalized by the worker's earnings in the year before firm closure.

Observable characteristics explain little of the variation in earnings losses following firm

closure


Average losses are heterogeneous across groups, but distributions overlap substantially




High educated

- Average cumulative earnings losses greater for less-educated workers
 - Low educated: 1.9 years
 - Medium educated: 1.2 years
 - High educated: 0.8 years
- Substantial overlap in distributions of losses

Average losses are heterogeneous across groups, but distributions overlap substantially

By age:

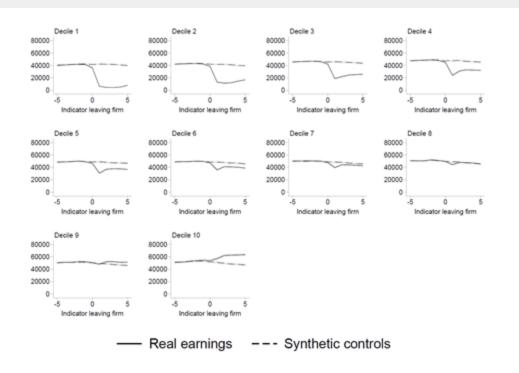
- Older: 1.5 years
- Younger: 1.14 years
- By gender:
 - Female: 1.6 years
 - Male: 1.15 years

Fixed worker characteristics cannot explain variation in earnings losses

 Variance decomposition to disentangle portion of cumulative five-year earnings losses explained by fixed worker and firm characteristics:

Pre-closure firm Municipality
$$Y_i = X_{i(-1)}'\beta + \theta_{i(-1)} + \vartheta_{i(-1)} + r_{i(-1)} + u_{i(-1)}$$
 Worker Pre-closure occupation

$$Var(Y_i) = Var(X'_{i(-1)}\hat{\beta}) + Var(\hat{\theta}_{i(-1)}) + Var(\hat{\theta}_{i(-1)}) + Var(\hat{r}_{i(-1)}) + Var(\hat{r}_{i(-1)}) + \\ 2Cov(X'_{i(-1)}\hat{\beta}, \hat{\theta}_{i(-1)}) + \dots + 2Cov(X'_{i(-1)}\hat{\beta}, \hat{r}_{i(-1)}) + Var(\hat{u}_{i(-1)})$$


Fixed worker characteristics cannot explain variation in earnings losses

- Fixed individual and closing firm characteristics explain only 17% of variance in earnings losses
 - Closing firm FEs explain the majority of this variation
- Observables explain 70% of variance in counterfactual earnings → treated worker earnings losses not purely driven by noise in SC estimates

	Treated earnings losses
Individual char.	0.016
Education	0.001
Pre-displacement firm f.e.	0.125
Pre-displacement occupation f.e.	0.030
Pre-displacement region f.e.	0.006
Citizenship	0.006
Residuals	0.830
Covariances	-0.014
Total variance of loss	1.000

Adjusters and Casualties

Firm closure leads to winners and losers

- Split workers into deciles of accumulated five-year losses
- Parallel trends for all deciles of losses
- Workers in bottom 60% of losses never fully recover
- Top 20% come out ahead

Zoom in on adjusters and casualties based on cumulative earnings losses

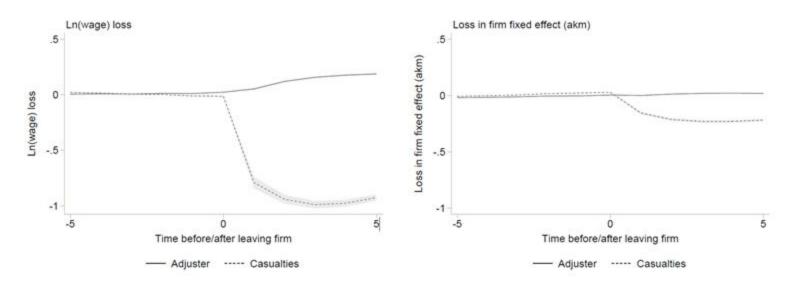
- Split workers by quartile of cumulative five-year earnings losses (relative to SC)
- Focus on:
 - Adjusters: workers in the lowest quartile of earnings losses
 - Casualties: workers in the highest quartile of earnings losses
- Will show (not casual):
 - How these losses accumulate
 - How ex post margins of adjustment differ in these groups

Adjusters recover quickly, many earn higher wages

	Adjusters					
Years after closure	1	2	3	4	5	
No wage						
Unemployed full year	1.1	0.2	0.2	0.2	0.4	
Partial year employed	5.9	1.4	0.6	0.6	0.4	
Wage loss $> 50\%$						
Partial year employed	0.5	0.1	0.1	0.0	0.1	
Full year employed	0.5	0.3	0.1	0.2	0.2	
Wage loss $10-50\%$						
Partial year employed	2.4	0.4	0.2	0.3	0.4	
Full year employed	8.2	5.7	3.8	4.5	4.7	
Wage loss 0-10%						
Partial year employed	4.5	0.6	0.3	0.3	0.6	
Full year employed	15.6	15.1	12.5	10.7	11.7	
Wage gain						
Partial year employed	11.2	4.3	2.6	2.2	3.0	
Full year employed	50.2	71.8	79.6	81.1	78.7	

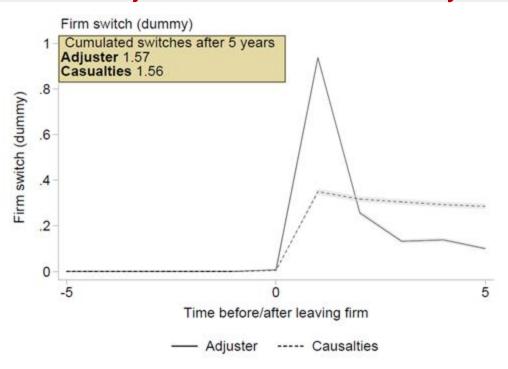
- One year after the firm closure,
 75% are working full time and
 61% earn a higher wage
- After 5 years, most adjusters are better off than would have been predicted absent the firm closure

Casualties struggle for years after layoff

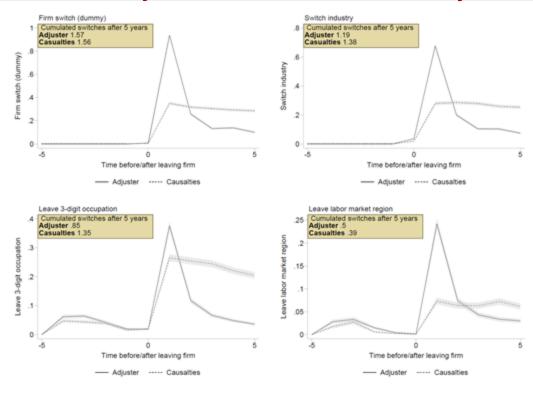

		C	asualti	es	
Years after closure	1	2	3	4	5
No wage		1			
Unemployed full year	35.3	39.9	37.4	31.9	23.4
Partial year employed	31.6	15.4	9.2	7.1	5.6
Wage loss $> 50\%$					
Partial year employed	5.8	8.6	8.4	8.1	8.2
Full year employed	4.4	10.3	17.0	21.1	23.7
Wage loss 10-50%					
Partial year employed	7.2	10.3	9.2	8.2	8.6
Full year employed	5.9	9.1	14.9	19.3	23.5
Wage loss 0-10%					
Partial year employed	2.3	1.9	1.4	0.9	0.6
Full year employed	1.9	1.1	0.9	1.0	2.1
Wage gain					
Partial year employed	3.1	2.0	1.2	1.0	1.1
Full year employed	2.5	1.4	0.5	1.3	3.2

- Initially: high rates of unemployment
- Over time: persistently depressed wages, partial employment
- Not just an unemployment story: 75% of casualties are in the lowest quartile of year 5 earnings

Are casualties systematically sorting to worse firms?


- Previous work: establishment effects account for a significant portion of wage losses (Schmieder et al. 2023)
- Goal: compare wage losses for adjusters/casualties to losses in firm AKM
 - Simulate counterfactual AKM path for each worker by applying synthetic control weights to donor AKM

Sorting across firms explains little of the wage differential between adjusters and casualties



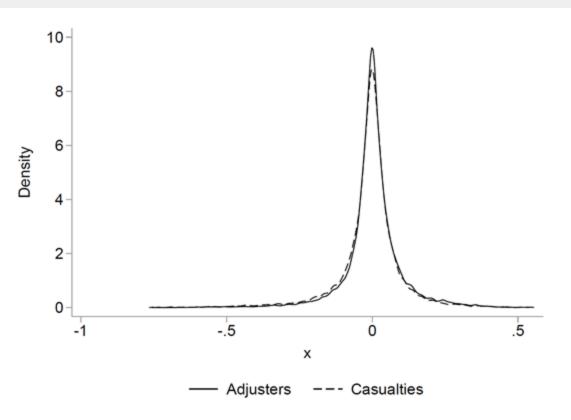
- Casualties switch to lower-paying firms, on average
- Extreme wage losses cannot be explained by switching to lower-paying firms alone

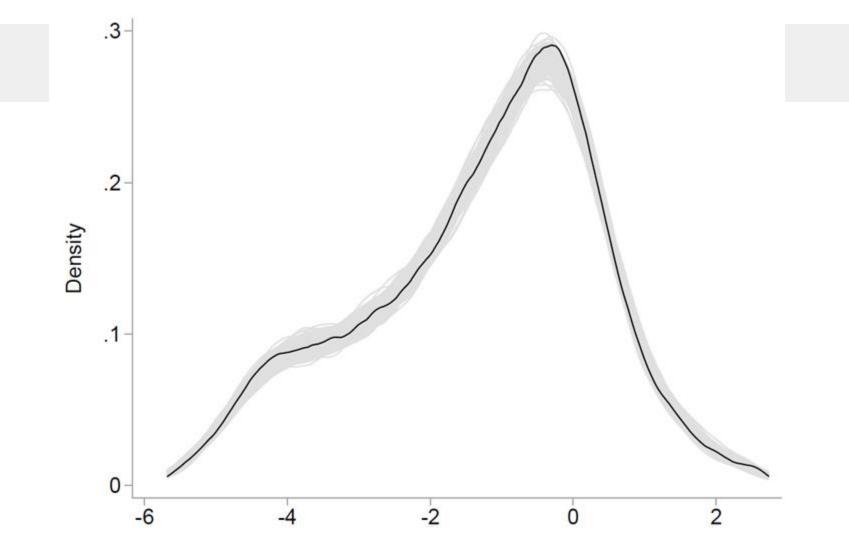
Adjusters and casualties make adjustments at equal rates, but adjusters make adjustments immediately

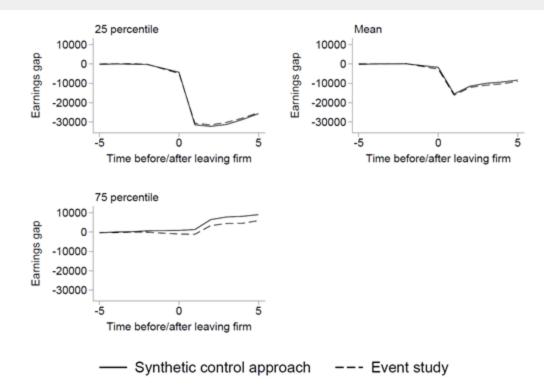
Adjusters and casualties make adjustments at equal rates, but adjusters make adjustments immediately

Additional analyses and robustness checks

- Adjuster/casualty results robust to comparing pairs of workers with identical characteristics who get laid off <u>from the same firm</u>
- Education updating: no effect
- Trade exposure: modest source of heterogeneous earnings losses
- Early leavers: are not systematically better off than workers who stay until the firm closes


Conclusion


- Recap: using a novel synthetic controls approach, we estimate the distribution of earnings losses following firm closures
- Large and persistent earnings losses on average, but considerable variation across individuals
 - 20% of workers come out ahead after 5 years
- Difference in outcomes is driven by post-layoff adaptability, not observable characteristics
- Future research: which margins of adjustment reduce impact of layoff?


Adjusters and Casualties: Anatomy of labor market distress

Eric Hanushek, Simon Janssen, Jacob Light, Lisa Simon

Overlapping pre-trend residual distributions for adjusters and casualties

	Non-displaced	Displaced	Difference	P-value	
Total labor earnings per calendar year	48380.874	48525.941	-145.067	0.629	
Gender	0.318	0.290	0.028	0.000	
Real tenure	3.618	5.471	-1.853	0.000	
Age (in years)	39.375	38.176	1.199	0.000	
		Educatio	on:		
Low educated (no vocational degree)	0.190	0.139	0.051	0.000	
Medium educated (apprenticeship degree)	0.746	0.837	-0.091	0.000	
High educated (university degree)	0.064	0.025	0.040	0.000	
No. employees total	553.937	170.998	382.939	0.000	
	Main industries of displaced workers:				
Manufacturing	0.457	0.449	0.008	0.042	
Wholesale and retail	0.170	0.217	-0.047	0.000	
Construction	0.093	0.165	-0.072	0.000	
Individuals	567508	161,213			

		Low	Micaeane	Hegre	rr onecre	111010
Mean	-1.275	-1.841	-1.196	-0.765	-1.612	-1.137
Mode	-0.489	-0.534	-0.482	-0.212	-0.520	-0.493
Skewness	-0.428	-0.037	-0.493	-0.476	-0.101	-0.551
P25	-2.354	-3.258	-2.188	-1.797	-3.105	-2.042
P75	-0.096	-0.486	-0.068	0.468	-0.208	-0.069

0.256

13364

Low

2213

Education

Gender

0.255

11335

Medium High Women Men

0.358

383

0.223

4625

All

15960

Loss < 1 month - 0.246 - 0.167

N