

Supply Chain Disruptions, the Structure of Production Networks, and the Impact of Globalization

Matthew Elliott Cambridge

Matthew O. Jackson Stanford & SFI

April 2024

THE WALL STREET JOURNAL BOXING DAY SPI

Subscribe

Sian In

Print Edition | Video | Audio | Latest Headlines | More ▼

Latest World Business U.S. Politics Economy Tech Finance Opinion Arts & Culture Lifestyle Real Estate Personal Finance Health Style Sports

BUSINESS

Tesla to Halt Production in Germany as Red Sea Conflict Hits Supply Chains

Disruption related to attacks on ships by Houthi rebels raise risk of supply-chain crisis in Europe

By William Boston Follow Costas Paris Follow and Benoit Faucon Follow Updated Jan. 12, 2024 1:45 pm ET

BERLIN—Tesla TSLA -3.67% ▼ plans to halt production at its only large factory in Europe for two weeks because of a lack of parts, a sign of how the fallout from recent attacks on ships in the Red Sea is starting to ripple through the global economy.

Yemen-based, Iran-backed Houthi fighters have launched successive attacks on

This Paper

Tractable model of (global, complex) supply chains to:

- characterize short-run impact of a shock,
- contrast with long-run impact,
- investigate how impacts depend on network/complexity,
- examine impact of globalization on fragility.

Some Related Literature

- Foundational work: Leontief (1936), Long Jr and Plosser (1983), Acemoglu et al. (2012)
- Surveys: Bernard (2018), Carvalho and Tahbaz-Salehi (2019), Baqaee and Rubbo (2022), Antràs and Chor (2022), Elliott and Golub (2022), Baldwin and Freeman (2022).
- Production networks: e.g., Dhyne et al. (2015); Magerman et al. (2016); Brummitt et al. (2017); Baqaee (2018); Oberfield (2018); Acemoglu and Tahbaz-Salehi (2020), Acemoglu and Azar (2020), Baqaee and Farhi (2021), Kopytov et al. (2021), Di Giovanni et al. (2022); Bernard et al. (2022), Elliott et al. (2022), Bui et al. (2022), König et al. (2022), Pellet and Tahbaz-Salehi (2023),
- Grossman et al. (forthcoming), Grossman et al. (2023a), Grossman et al. (2023b)

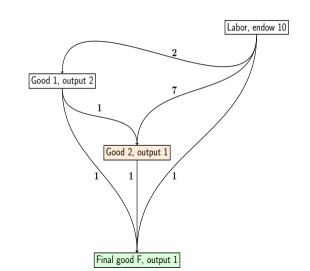
 Trade networks: e.g., Furusawa and Konishi (2007); Chaney (2014); Bernard et al. (2019); Grossmand et al. (2021)
- Micro network structure: e.g., Bimpikis et al. (2018), Bimpikis et al. (2019), Amelkin and Vohra (2020)

Outline

- Introduction
- 2 Model
- 3 The Impacts of Shocks: Contrasting Short and Long Runs
- 4 Complexity, Fragility, Globalization

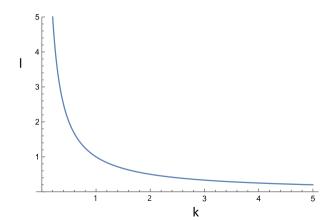
Model

- $n \in \{1, \dots, N\}$ countries,
- ullet $m \in \{1, \dots, M\}$ intermediate goods,
- $\bullet \ f \in \{1, \dots, F\}$ final goods,
- ullet L_n units of labor country n,
- T_n (finite) set technologies country n.


Example: Technologies

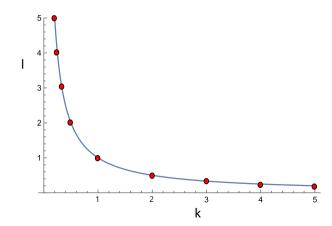
$$au_1 = (\underbrace{-1}_{\mathsf{labor}}, \underbrace{1}_{1}, \underbrace{0}_{2}, \underbrace{0}_{F}$$

$$au_2 = (\underbrace{-7}_{\mathsf{labor}}, \underbrace{-1}_{1}, \underbrace{1}_{2}, \underbrace{0}_{F}$$


$$au_F = (\underbrace{-1}_{\mathsf{labor}}, \underbrace{-1}_{1}, \underbrace{-1}_{2}, \underbrace{1}_{F}$$

Arrow-Debreu (1954) Technologies

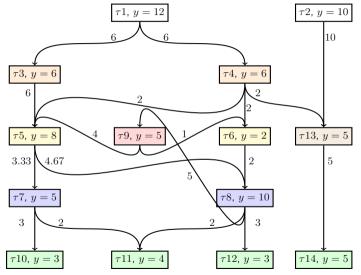
Suppose country n can produce according to $y = L^{\alpha}K^{1-\alpha}$


Then
$$T_n = \{(-l, -k, 1) : l^{\alpha}k^{1-\alpha} = 1\}$$

Arrow-Debreu (1954) Technologies

Suppose country n can produce according to $y = L^{\alpha}K^{1-\alpha}$

Then $T_n = \{(-l, -k, 1) : l^{\alpha}k^{1-\alpha} = 1\}$


Equilibrium

- Laborers/Consumers
 - supply labor inelastically, L_n in country n;
 - lacktriangledown maximize homothetic preferences for final goods, $U(c_1,\ldots,c_F)$.
- Producers
 - \blacktriangleright maximize profits $p_{\tau}y_{\tau} \sum_{\tau'} p_{\tau'}x_{\tau'\tau}$,
 - s.t feasible production: $-\tau_k y_{\tau} = \sum_{\tau': O(\tau') = k} x_{\tau'\tau}$.
- Markets clear standard Arrow-Debreu equilibrium.

Example w Cycles (Labor Omitted, Final Goods in Green)

Outline

- Introduction
- 2 Model
- The Impacts of Shocks: Contrasting Short and Long Runs
- 4 Complexity, Fragility, Globalization

Impact of Shock

For τ with output k, we normalized $\tau_k = 1$.

Let's vary τ_k to capture shocks/disruptions

Analyze/contrast:

- Long run: new equilibrium using shocked technologies,
- **Short run**: work with existing supplies/shortages.

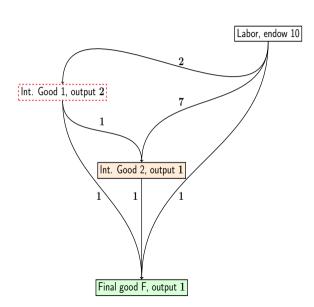
Long-Run: Hulten's Theorem

Proposition (Hulten's Theorem)

Consider a generic equilibrium and technology τ , with $O(\tau)=k$, used in positive amounts in equilibrium. Then

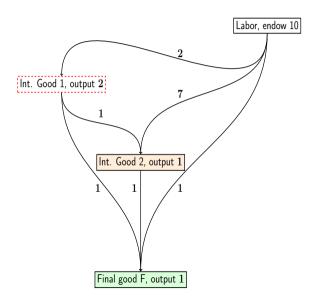
$$\frac{\partial \log(U)}{\partial \log(\tau_k)} = \frac{\partial \log(GDP)}{\partial \log(\tau_k)} = \frac{p_\tau y_\tau}{GDP}.$$

Long-Run: Hulten's Theorem

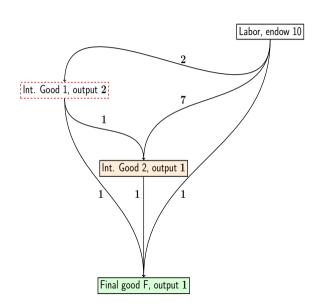

Proposition (Hulten's Theorem)

Consider a generic equilibrium and technology τ , with $O(\tau)=k$, used in positive amounts in equilibrium. Then

$$\frac{\partial \log(U)}{\partial \log(\tau_k)} = \frac{\partial \log(GDP)}{\partial \log(\tau_k)} = \frac{p_{\tau}y_{\tau}}{GDP}.$$


- Sufficient statistic: spending on shocked technology.
- Intuition—adjust by sourcing more inputs at the margin.
- Network matters in background as it determines equilibrium
 - ▶ but don't need to see network to estimate long-run impact.

$$p = (\underbrace{\frac{1}{10}}_{\text{labor}}, \underbrace{\frac{1}{10}}_{Int.1}, \underbrace{\frac{4}{5}}_{Int.2}, \underbrace{\frac{1}{Final}})$$



$$p = (\underbrace{\frac{1}{10}}_{\text{labor}}, \underbrace{\frac{1}{10}}_{Int.1}, \underbrace{\frac{4}{5}}_{Int.2}, \underbrace{\frac{1}{Final}})$$

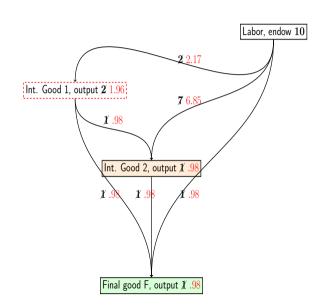
$$\begin{aligned} p_1y_1 &= 1/10*2;\\ GDP &= \sum_f p_fc_f = 1;\\ \text{Marginal impact:} \end{aligned}$$

$$\frac{p_1y_1}{\mathsf{GDP}} =$$

$$p = (\underbrace{\frac{1}{10}}_{\text{labor}}, \underbrace{\frac{1}{10}}_{Int.1}, \underbrace{\frac{4}{5}}_{Int.2}, \underbrace{\frac{1}{Final}})$$

$$p_1 y_1 = 1/10 * 2;$$

 $GDP = \sum_f p_f c_f = 1;$


Marginal impact:

$$\frac{p_1y_1}{\text{SDP}} = \frac{1}{5}$$

Extrapolating for a 10% shock, (source more)

Long Run impact: $1/50 \mathrm{th}$ of GDP

$$p = (\underbrace{\frac{1}{10}}_{\text{labor}}, \underbrace{\frac{1}{10}}_{Int.1}, \underbrace{\frac{4}{5}}_{Int.2}, \underbrace{\frac{1}{Final}})$$

$$p_1 y_1 = 1/10 * 2;$$

 $GDP = \sum_f p_f c_f = 1;$

Marginal impact:

$$\frac{p_1y_1}{\mathsf{GDP}} = \frac{1}{5}$$

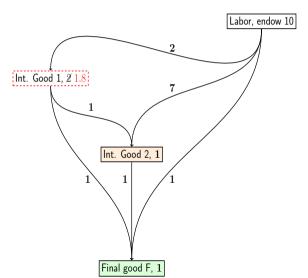
Extrapolating for a 10% shock, (source more)

 $\begin{tabular}{ll} \textbf{Long Run impact:} & $1/50$ th of GDP \\ \end{tabular}$

Larry Summers 2013

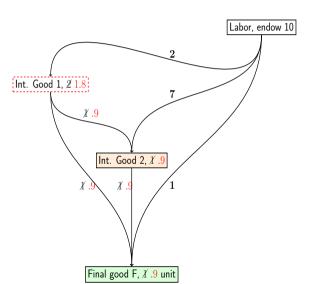
"There would be a set of economists who would sit around explaining that electricity was only 4% of the economy, and so if you lost 80% of electricity, you couldn't possibly have lost more than 3% of the economy...[However,] we would understand that [...] when there wasn't any electricity, there wasn't really going to be much economy."

Short-Run Impact of a Shock


Hulten: Production is perfectly flexible and fully adjusts. (Marginal result.)

Now: Opposite benchmark with no adjustments. (Our result holds away from the margin.)

- Cannot adjust the technologies being used.
- Cannot source additional units from alternative suppliers.
- Prices cannot adjust—rationing of disrupted goods is proportional



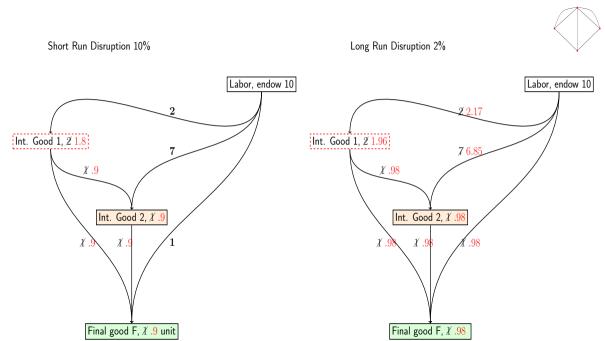


Figure: Shock Propagation Algorithm

Figure: Shock Propagation Algorithm

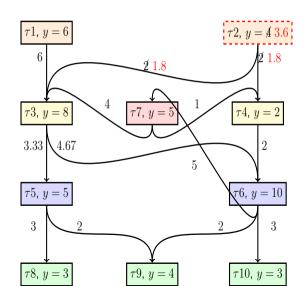


Figure: Shock Propagation Algorithm

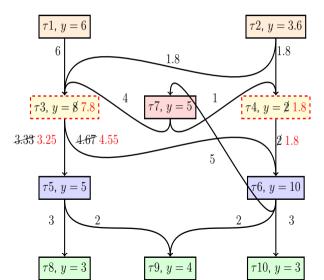


Figure: Shock Propagation Algorithm

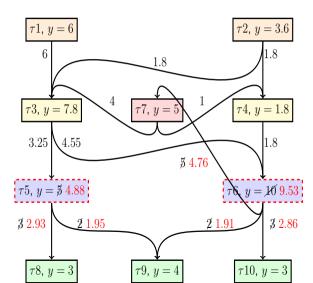


Figure: Shock Propagation Algorithm

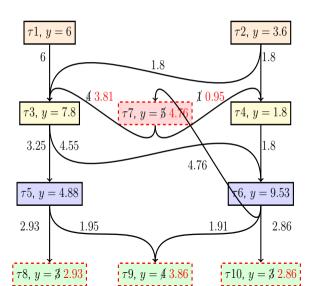


Figure: Shock Propagation Algorithm

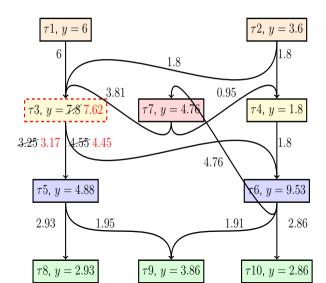
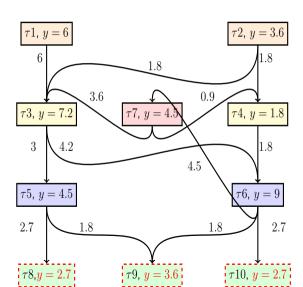



Figure: Shock Propagation Algorithm

Short-Run Impact: The Minimum Disruption Problem

$$\max_{(\hat{y}_{\tau})_{\tau}} \sum_{\tau: O(\tau) \in F} p_{\tau} \hat{y}_{\tau}$$

subject to

- **1** shock constraints: $\hat{y}_{\tau} \leq \lambda y_{\tau}$ for all $\tau \in T^{shocked}$,
- $m{Q}$ technology constraints $\hat{y}_{ au} \leq \left(\min_{\mathsf{Inputs} \; \mathsf{used} \; \mathsf{by} \; au} \frac{\mathsf{New \; input \; level}}{\mathsf{Original \; input \; level}}\right) y_{ au}$ for active au,
- **3** proportional rationing $\hat{x}_{\tau\tau'} = x_{\tau\tau'} \left(\frac{\hat{y}_{\tau}}{y_{\tau}}\right)$ for active $\tau'\tau$,
- inactive technologies stay inactive.

Shock Propagation Algorithm

Define an algorithm that traces shock (like example): it converges to a solution of the minimum disruption problem.

Let $F(T^{shocked})$ be the final goods on directed paths from shocked technologies.

Proposition (Upper Bound)

Consider a shock that reduces the output of technologies $\tau \in T^{shocked}$ to $\lambda < 1$ of their original levels. The proportion of lost GDP is bounded above by

$$(1-\lambda)\left(\frac{\sum_{f\in F(T^{shocked})}p_fc_f}{GDP}\right).$$

Sufficient Conditions for Bound to Bite

• All producers of given good and any "substitute" for it in a supply chain are shocked.

 Globalization/Low shipping costs: for low enough transportation costs generically get unique technologies used.

• Other sufficient conditions (graph-cut) in paper.

Short Run vs Long Run

Long Run, Hulten's Theorem,

$$\frac{\partial \log(U)}{\partial \log(\lambda)} = \frac{\partial \log(GDP)}{\partial \log(\lambda)} = \frac{(1-\lambda)p_{\tau}y_{\tau}}{GDP}.$$

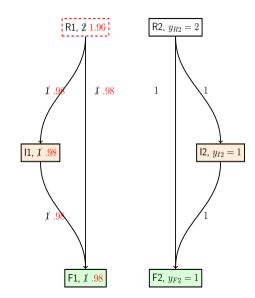
Short Run, when bound bites

$$\frac{\Delta \log(U)}{\Delta \log(\lambda)} = \frac{\Delta \log(GDP)}{\Delta \log(\lambda)} = \frac{(1-\lambda)\sum_{f \in F(\tau)} p_f c_f}{GDP}.$$

Short Run vs Long Run

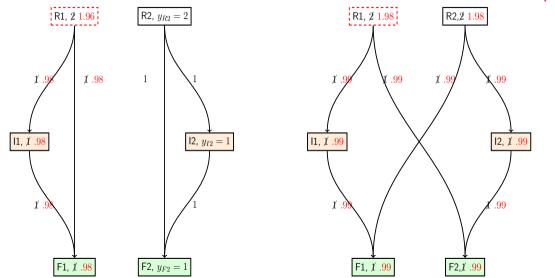
Long Run, Hulten's Theorem,

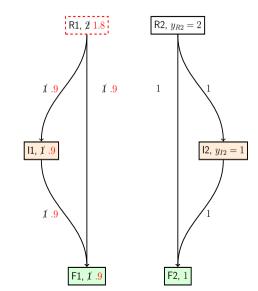
$$\frac{\partial \log(U)}{\partial \log(\lambda)} = \frac{\partial \log(GDP)}{\partial \log(\lambda)} = \frac{(1-\lambda)p_{\tau}y_{\tau}}{GDP}.$$

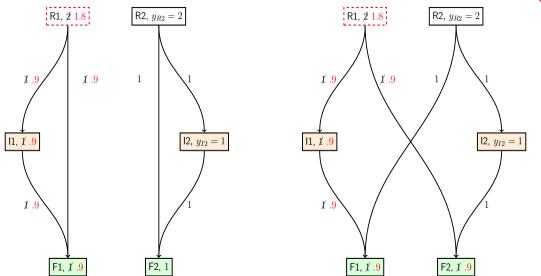

Short Run, when bound bites

$$\frac{\Delta \log(U)}{\Delta \log(\lambda)} = \frac{\Delta \log(GDP)}{\Delta \log(\lambda)} = \frac{(1-\lambda)\sum_{f \in F(\tau)} p_f c_f}{GDP}.$$

- Long Run: shocking more expensive technologies has a larger impact.
- Short Run: shocking technologies that are used in more final goods has a larger impact.


Long Run: Network Irrelevant, Impact 1%


Long Run: Network Irrelevant, Impact 1%


Short Run: Network Matters: Impact 5% or 10%

Short Run: Network Matters: Impact 5% or 10%

Short Run vs Long Run

Short Run:

- Network position matters,
- Disrupt all final goods downstream

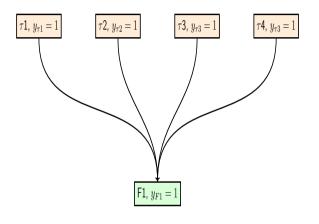
Long Run:

- (Much) cheaper than Short Run,
- Relative cost of input matters,
- Network matters, but only to extent changes costs.

Outline

- Introduction
- 2 Model
- 3 The Impacts of Shocks: Contrasting Short and Long Runs
- Complexity, Fragility, Globalization

Supply Chain Complexity and Disruption



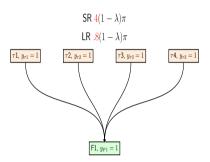
Under the bound, randomly disrupt any technology to $\lambda < 1$:

- ullet Probability π disrupt any given intermediate technology, independent.
- \bullet S= average # inputs used produce a final good.
- q = E[(cost of random input)/(cost per final good)].
- ullet m= average number of final goods downstream from random input.

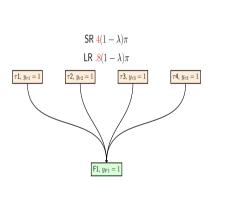
Horizontal Supply Chain (all labor inputs = 1)

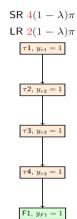
Labor endowment: 5

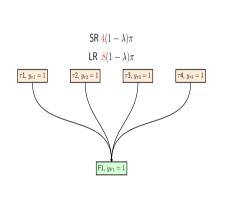
$$p = \left(\underbrace{\frac{1}{5}}_{\text{labor}}, \underbrace{\frac{1}{5}}_{\tau 1}, \underbrace{\frac{1}{5}}_{\tau 2}, \underbrace{\frac{1}{5}}_{\tau 3}, \underbrace{\frac{1}{5}}_{\tau 4}, \underbrace{\frac{1}{F}}_{F}\right)$$

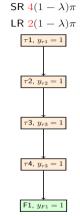

Complexity inputs/final good: S=4.

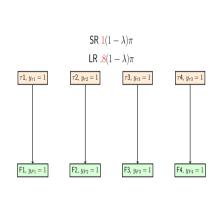
Average input cost / final good cost: q=.2


Short Run expected impact: $4(1-\lambda)\pi$


Long Run expected impact: $.8(1-\lambda)\pi$







Supply Chain Complexity and Disruption

Proposition (Complexity and Fragility)

For small π

$$\text{Short-Run} \quad \mathbb{E}\left[\frac{\Delta GDP}{GDP}\right] \approx -(1-\lambda)\pi S,$$

$$\label{eq:long-Run} \text{Long-Run} \quad \mathbb{E}\left[\frac{\Delta GDP}{GDP}\right] \approx -(1-\lambda)\pi S\frac{q}{m}.$$

Supply Chain Complexity and Disruption

Short Run:

- shape (breadth vs depth) of supply chain is irrelevant (S matters),
- ullet More final goods, lower S, impact compartmentalized.

Long Run:

- shape of supply chain matters as it affects relative costs,
- number of final goods does not matter, relative costs of inputs does.

Trade Costs and Globalization

$$\theta_{\tau\tau'} \geq 1$$
 units of $O(\tau)$ shipped from τ for 1 unit to get to τ' .

Effects of dropping costs:

• Increased specialization: only most efficient technology is used.

Trade Costs and Globalization

$$\theta_{\tau\tau'} \geq 1$$
 units of $O(\tau)$ shipped from τ for 1 unit to get to τ' .

Effects of dropping costs:

- Increased specialization: only most efficient technology is used.
- \bullet $\sim\!\!90\%$ of most advanced computer chips assembled in Taiwan,
- ullet Materials cross borders >70 times before final assembly.

Fragility and globalization

Proposition

Consider some final good f produced in equilibrium in two economies by some technology τ_f , with a higher output in economy 2 than 1. If the set of technologies that lie on a directed path to τ_f is smaller in economy 2 $(\mathcal{G}^2(\tau_f) \subsetneq \mathcal{G}^1(\tau_f))$, and shocks are independent across technologies with the same proportional disruption, then the probability of a disruption to τ_f is lower, but the expected short-run impact conditional on disruption is higher, in economy 2 than 1.

Fragility and globalization

Proposition

Consider some final good f produced in equilibrium in two economies by some technology τ_f , with a higher output in economy 2 than 1. If the set of technologies that lie on a directed path to τ_f is smaller in economy 2 ($\mathcal{G}^2(\tau_f) \subsetneq \mathcal{G}^1(\tau_f)$), and shocks are independent across technologies with the same proportional disruption, then the probability of a disruption to τ_f is lower, but the expected short-run impact conditional on disruption is higher, in economy 2 than 1.

Lower transportation costs lead to specialized production and consolidation (and the bound holds).

Consolidating supply chains leads to lower chances of disruption, but larger disruptions.

Fragility and globalization

- More specialized production—fewer, larger producers,
- Larger shocks, but fewer producers and so (possibly) less frequent.
- As cross more borders, could face more political/transport risk...

Summary

- Short and long run can differ dramatically, both very tractable.
- Short run depends on all downstream goods, long run only on cost of shocked goods
- Short run network 'rewiring' matters, not in long run
- Medium run depends on relative values of downstream goods
- Increasingly complex chains are more vulnerable
- Globalization/specialization leads to less likely but bigger shocks

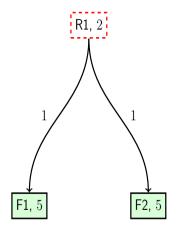
Externalities!

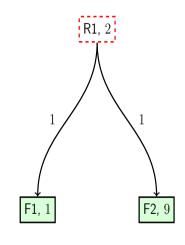
- Competition is inefficient (missing markets)
- Competition pushes to cheaper sourcing, low inventories
- Unless compensated for resilience, leads to excessive specialization/fragility
- Policy implications of model:
 - ► Short run:
 - ★ target 'central' technologies
 - ★ build inventories, substitutes (decrease centrality)
 - ★ build parallel chains
 - ► Long run:
 - ★ target 'expensive' technologies
 - ★ support diverse technologies for same goods
 - ★ favor technologies enabling shallower supply chains

Discussion

Medium Run

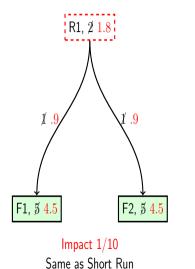
No new sourcing: existing supply chains in place

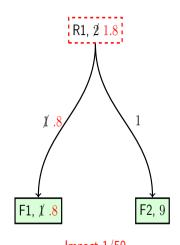

Prices can steer rationed goods to most needed technologies


If multiple flows affected:

- Different supply chains have similar final good values: looks like short run,
- Different supply chains have very different final good values: looks more like long run, only disrupt lowest value chains.

Medium Run Shock Impact




Equal-Valued Final Goods

Unequal-Valued Final Goods

Medium Run Shock Impact

Impact 1/50 Close to Long Run