

Discussion of Deborah Gordon, "The Ant Colony's Dilemma"

> Chad Jones Stanford GSB

Hoover Conference on Long-Run Prosperity March 29, 2024

Harvester Ants

- Fascinating to see how a different discipline works and to ponder what we can learn about economics from ants.
- Ant facts
 - Queen lives for 30 years, peak size of a colony is 10,000 ants
 - $\circ~$ Foragers gather food, trading off loss of body water versus finding food
 - If more foragers return with food, more ants leave to forage.
 - Heterogeneity across colonies in willingness to forage on dry days.
 - Heterogeneity can lead to more successful collections of colonies.

Climate Change

- Ants cannot innovate (or only limited / through evolution?)
- Race between evolutionary adaptation and speed of climate change
 - Waxy coating to reduce water loss
 - Density of colonies that survive (less dense and less competition for food).
- Malthusian world of ants (like Malthusian growth model)
 - High quality land/climate leads to more colonies surviving
 - Greater density of colonies?
 - Any change in peak size of a given colony?

The Macroeconomics of Ants

- What if the ecosystem of ant colonies shifts (north?) in response to climate change?
- Macro-adaptation may mean that the total number of ants does not decline?

Human migration and the migration of agriculture likely important forms of adaptation

What is ant success? What is human success?

- Malthusian model means "ant success" is measured by the total population of ants not consumption per ant
- Economists typically focus on income per person but ignore the number of people
 - Japan since 1960 = growth miracle. But only increased population by 30%
 - Mexico since 1960 has below average per capita growth. But tripled its population
- Isn't a world with more people, ceteris paribus, better?
- What if we value increases in population as well?

"Population and Welfare: The Greatest Good for the Greatest Number" (Adhami, Bils, Jones, and Klenow, 2024)

Counting people like we count ants!

- Total utilitarian social welfare: $W = N \cdot u(c)$ (linear in *N*)
 - \Rightarrow Growth in consumption-equivalent welfare:

 $g_{\lambda} = v(c) g_N + g_c$

 λ is consumption-equivalent welfare g_c is the growth rate of per capita consumption g_N is population growth v(c) value of a year of life as ratio to annual c

- In U.S. today, $v(c) = \frac{\$185k}{\$38k} \approx 5$
 - $\circ v(c) = 0$ is an extreme corner

 $\circ v(c)$ rises with consumption; high for rich countries, low for poor

Decomposing welfare growth in select countries, 1960-2019

	g_{λ}	g_c	g_N	v(c)	$v(c) \cdot g_N$	Pop Share
Mexico	8.6	1.8	2.1	3.4	6.8	79%
United States	6.5	2.2	1.0	4.4	4.3	66%
China	5.8	3.8	1.3	1.8	2.0	34%
Japan	4.9	3.2	0.5	3.8	1.7	34%
Ethiopia	4.4	2.5	2.7	0.7	1.9	44%
Germany	3.7	2.9	0.2	4.0	0.8	22%

Some big differences in percentiles, 1960–2019 growth

PERCENTILE 90 -Consumption Growth Percentile Welfare Growth Percentile 80 70 60 50 40 30 20 10 0 Mexico South Africa Kenya Germany Japan China **MOVING UP MOVING DOWN**

Summary

- Fascinating to see complementarities between disciplines
- Interesting lessons from
 - Climate change and mitigation methods
 - Malthusian model of ants
- Fortunately, people can innovate and *technological evolution is much faster than biological evolution*