The Impact of Commercial Real Estate Regulations on U.S. Output

Fil Babalievsky

Census Bureau

Kyle F. Herkenhoff

Federal Reserve Bank of Minneapolis, University of Minnesota, IZA, \& NBER

Lee E. Ohanian

University of California Los Angeles, Federal Reserve Bank of Minneapolis, Hoover Institute, \& NBER

Edward C. Prescott
Arizona State University, Federal Reserve Bank of Minneapolis, \& NBER

March 27, 2024

How do commercial land use regulations affect output and welfare?

- Motivation.
- Several studies of US residential land use regulations find substantial effects on U.S. economy (Herkenhoff Ohanian Prescott 2018, Hsieh Moretti 2019)
- Commercial regulation is conceptually similar, yet little known about impact on U.S. economy
- Challenge is commercial regulation is multi-dimensional, local \& allows exemptions
- Infeasible to consistently codify across cities or measure bite without model

How do commercial land use regulations affect output and welfare?

- Motivation.
- Several studies of US residential land use regulations find substantial effects on U.S. economy (Herkenhoff Ohanian Prescott 2018, Hsieh Moretti 2019)
- Commercial regulation is conceptually similar, yet little known about impact on U.S. economy
- Challenge is commercial regulation is multi-dimensional, local \& allows exemptions
- Infeasible to consistently codify across cities or measure bite without model
- This paper.
- Quantify effects of commercial regulation using CoreLogic's address-level tax valuations
- Develop GE model with commercial construction sector to estimate address-level regulatory distortion for all U.S. buildings

How do commercial land use regulations affect output and welfare?

- Economic logic.
- When land is costly, substitute towards construction (build taller)
- Model infers regulatory distortion whenever valuable land has small building
- We show model distortions correlate strongly with hand-collected zoning features

How do commercial land use regulations affect output and welfare?

- Economic logic.
- When land is costly, substitute towards construction (build taller)
- Model infers regulatory distortion whenever valuable land has small building
- We show model distortions correlate strongly with hand-collected zoning features
- Results.
- Moving all cities to least strict regulations in US yields 3\% GDP \& 1.5\% CEV gain
- Highly regulated CA cities (LA, SF) benefit vs. less regulated TX cities (Dallas, Houston)
- Still large gains with 40% remote work share \& doubling negative congestion externality

General equilibrium model

- One-sector optimal growth model w/ regions (j) \& commercial buildings in production
- Regions are MSAs that differ by TFP and amenities with negative congestion externality
- One region is remote work sector which does not use buildings in production

General equilibrium model

- One-sector optimal growth model w/ regions (j) \& commercial buildings in production
- Regions are MSAs that differ by TFP and amenities with negative congestion externality
- One region is remote work sector which does not use buildings in production

$$
\begin{aligned}
\text { Household: } & \max _{c_{t}, i_{t}, K_{j, t}, L_{j, t}} \sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\frac{1}{1+\frac{1}{\eta}} \sum_{j=1}^{N}\left(\frac{L_{j, t}}{a_{j}\left(L_{j, t} / X_{j}\right)}\right)^{1+\frac{1}{\eta}}\right) \\
& \text { s.t. } \quad c_{t}+i_{t}=\sum_{j}\left(\pi_{j, b, t}+\pi_{j, f, t}+w_{j, t} L_{j, t}+r_{k, t} K_{j, t}\right)
\end{aligned}
$$

$\operatorname{Firm} j: \max _{K_{j, t}, L_{j, t}, B_{j, t}} A_{j} L_{j, t}^{\alpha} B_{j, t}^{\chi_{j}} K_{j, t}^{1-\alpha-\chi_{j}}-w_{j, t} L_{j, t}-r_{k, t} K_{j, t}-r_{b, j, t} B_{j, t}$
Developer $j: \quad \max _{m_{j, t}} p_{j, t} \cdot T_{j, t} \cdot B_{j, t}\left(D_{j, t}, m_{j, t}\right)-m_{j, t}$

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i defined by
x_{i} : Land square-footage
p_{i} : Price per-building-square-foot
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion ("virtual" wedge - distorts choices but no resource transfer, height limit)

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i defined by
x_{i} : Land square-footage
p_{i} : Price per-building-square-foot
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion ("virtual" wedge - distorts choices but no resource transfer, height limit)

- No regulation: use land \& improvements m_{i} to create building square footage $\left(B S F_{i}\right)$

$$
\max _{m_{i}} p_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}
$$

FOC implies $\gamma=\frac{q_{i} m_{i}}{p_{i} B S F_{i}}$ (marginal benefit=marginal cost)
Regulatory limits imply marginal benefit > marginal cost, attribute gap to regulations τ_{i}

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i defined by
x_{i} : Land square-footage
p_{i} : Price per-building-square-foot
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion ("virtual" wedge - distorts choices but no resource transfer, height limit)

- Example of a regulation: floor-area ratio limit

$$
\begin{aligned}
& \max _{m_{i}} p_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \\
& \text { such that } \quad \frac{B S F_{i}}{x_{i}} \leq \bar{H}
\end{aligned}
$$

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i defined by
x_{i} : Land square-footage
p_{i} : Price per-building-square-foot
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion ("virtual" wedge - distorts choices but no resource transfer, height limit)

- Example of a regulation: floor-area ratio limit
$\max _{m_{i}} \tau_{i} p_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-\underbrace{q_{i} m_{i}}_{M v_{i}}$,
e.g. Floor Area Ratio: $\tau_{i}= \begin{cases}1 & \text { if } \frac{B S F_{i}}{x_{i}} \leq \bar{H} \\ 0 & \text { otherwise }\end{cases}$
- Assumption: τ_{i} is address-level constant, to capture multi-faceted zoning

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i defined by
x_{i} : Land square-footage
p_{i} : Price per-building-square-foot
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion ("virtual" wedge - distorts choices but no resource transfer, height limit)

- Regulation: $\tau_{i}=1$ is unregulated, $\tau_{i}=0$ is construction ban

$$
\max _{m_{i}} \tau_{i} p_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}
$$

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i defined by
x_{i} : Land square-footage
p_{i} : Price per-building-square-foot
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion ("virtual" wedge - distorts choices but no resource transfer, height limit)

- Regulation: $\tau_{i}=1$ is unregulated, $\tau_{i}=0$ is construction ban

$$
\max _{m_{i}} \tau_{i} p_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}
$$

- FOC implies $\tau_{i} \gamma=\frac{q_{i} m_{i}}{p_{i} B S F_{i}}$
- Note τ_{i} distorts m_{i}^{*} but doesn't enter profit (e.g. zoning): $\pi=1 \cdot \beta p_{i}\left(m_{i}^{*}\right)^{\gamma} x_{i}^{1-\gamma}-q_{i} m_{i}^{*}$

Modeling Commercial Building Regulation

Construction ban: $\tau_{i}=0$

Sandhill road

Menlo Park

Interpretation of regulatory distortion τ_{i}

$$
\text { Developer's problem: } \max _{m_{i}} \tau_{i} p_{i} m_{i}^{\gamma} x_{i}^{1-\gamma}-q_{i} m_{i}
$$

- What τ_{i} is.

Anything that restricts building size, conditional on factor prices p_{i}, q_{i}

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.

Interpretation of regulatory distortion τ_{i}

$$
\text { Developer's problem: } \max _{m_{i}} \tau_{i} p_{i} m_{i}^{\gamma} x_{i}^{1-\gamma}-q_{i} m_{i}
$$

- What τ_{i} is.

Anything that restricts building size, conditional on factor prices p_{i}, q_{i}

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.
- What τ_{i} is not.

Not anything that enters building prices p_{i} (e.g. local building demand, property taxes)
Not anything that enters construction cost q_{i}

- Restrictions on building techniques (Schmitz (2020): prefab)
- Difficulty of building

Combining Model and Data

- Data.
- Address-level tax assessments compiled by CoreLogic
- Divides total property value into improvements \& land (e.g., using replacement cost of building):

$$
\text { Total Value of Property }(\mathrm{TV})=\underbrace{\text { Improvement Value (MV) }}_{q_{i} m_{i}=\text { cost of structures }} \text { +Land Value (LV) }
$$

Combining Model and Data

- Data.
- Address-level tax assessments compiled by CoreLogic
- Divides total property value into improvements \& land (e.g., using replacement cost of building):

Total Value of Property (TV) $=\underbrace{\text { Improvement Value (MV) }}_{q_{i} m_{i}=\text { cost of structures }}$ +Land Value (LV)

- Identifying τ using CoreLogic Data:
- Model's closed-form solution for regulatory distortion $\left(\tau_{i}\right)$ depends on improvement share $\frac{M V}{T V}$:

$$
\tau_{i}=F\left(\frac{M V_{i}}{T V_{i}}\right), \quad F^{\prime}(\cdot)>0
$$

- Low improvement share implies low τ_{i}, more distorted
(e.g. small building on valuable land \rightarrow strict regulation)

Identification of τ_{i}

- Regulatory distortion $\left(\tau_{i}\right)$ is increasing in improvement share $\frac{M V_{i}}{T V_{i}}$:

$$
\tau_{i}=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta} \frac{M V_{i}}{T V_{i}}\right)}{\gamma \beta\left(1+\frac{\delta_{b}}{1-\beta} \frac{M V_{i}}{T V_{i}}\right)}
$$

- Low improvement share implies low τ_{i}, more distorted
- For example, a small building on valuable land \rightarrow strict regulation

Empirically Validating Model Distortions

- Key zoning code features.
- Two prominent components of zoning codes include
- Height limits: caps building height
- Floor-area-ratio limits: caps building size relative to land size

Empirically Validating Model Distortions

- Key zoning code features.
- Two prominent components of zoning codes include
- Height limits: caps building height
- Floor-area-ratio limits: caps building size relative to land size
- Comparing model distortion (τ) to data.
- Hand-collect height limits and floor-area-ratios for several cities and compare to τ
- If these regulations are important, expect positive but imperfect correlation with τ
- Model τ includes non-zoning features (deed restrictions), \& zoning exemptions (variances)

Comparing τ to actual zoning codes

1. Distortions align with hand-collected floor-area-ratios (FARs) in NYC

Comparing τ to actual zoning codes

1. Distortions align with hand-collected floor-area-ratios (FARs) in NYC
2. And hand-collected height limits in DC

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_{i} component $\left(T_{j}\right) \&$ dispersion in τ_{i} component $\left(D_{j}\right)$

$$
\max _{m_{j}} p_{j} \cdot T_{j} \cdot B S F_{j}\left(D_{j}, m_{j}\right)-m_{j}
$$

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_{i} component $\left(T_{j}\right) \&$ dispersion in τ_{i} component $\left(D_{j}\right)$

$$
\max _{m_{j}} p_{j} \cdot T_{j} \cdot B S F_{j}\left(D_{j}, m_{j}\right)-m_{j}
$$

$$
T_{j}=\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}}
$$

- Reflects average city-wide distortion
- Takes value $\bar{\tau}$ if all $\tau_{i}=\bar{\tau}$
- Focus of counterfactuals

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_{i} component $\left(T_{j}\right)$ \& dispersion in τ_{i} component $\left(D_{j}\right)$

$$
\max _{m_{j}} p_{j} \cdot T_{j} \cdot B S F_{j}\left(D_{j}, m_{j}\right)-m_{j}
$$

$$
T_{j}=\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}}
$$

$$
D_{j}=\left(\frac{\sum_{i \in j} M V_{i} / \tau_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}}}\right) /\left(\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}}}\right)^{\gamma}
$$

- Reflects average city-wide distortion
- Takes value $\bar{\tau}$ if all $\tau_{i}=\bar{\tau}$
- Focus of counterfactuals
- Reflects τ_{i} dispersion within city
- Part regulation, part measurement error
- Hold fixed today [paper alters D_{j}]

Which cities are most and least regulated?

- Major California cities (LA, SF) more regulated than Texas (Dallas, Houston)

Which cities are most and least regulated?

- Major California cities (LA, SF) more regulated than Texas (Dallas, Houston)
- Least-regulated city is Midland TX; developers in strict zoned cities build 20% less, c.p.

	Name	T_{j}
	Average regulatory distortion	0.85
Least Regulated City:	Midland, TX ("The Tall City")	1 (Normalized)
	San Diego	0.79
Major MSAs:	San Jose	0.80
	Miami	0.80
	New York	0.86
	Chicago	0.88
	Phoenix	0.89

Counterfactuals

- Baseline: All distortions T_{j} set to loosest U.S. level (Midland, TX), fix dispersion D_{j}
- More buildings drive output gain, \& Developer profits fall suggesting τ reflects rent-seeking
- Results robust to three available divisions of MV and LV, doubling or removing congestion

$\% \Delta$ from 2018 steady state	Baseline
Output	3.0%
Employment	-0.8%
Building Stock	17%
Developer Profits	-2.8%
Output, holding building allocation fixed	0.2%
Consumption Equivalent Gain	1.6%

Counterfactuals

- Baseline: All distortions T_{j} set to loosest U.S. level (Midland, TX), fix dispersion D_{j}
- More buildings drive output gain, \& Developer profits fall suggesting τ reflects rent-seeking
- Results robust to three available divisions of MV and LV, doubling or removing congestion
- 40\% remote work: Output gains scale down linearly with remote work

$\% \Delta$ from 2018 steady state	Baseline	Remote Work
Output	3.0%	1.5%
Employment	-0.8%	-0.8%
Building Stock	17%	19%
Developer Profits	-2.8%	-1.1%
Output, holding building allocation fixed	0.2%	-0.4%
Consumption Equivalent Gain	1.6%	0.8%

Counterfactuals

- Baseline: All distortions T_{j} set to loosest U.S. level (Midland, TX), fix dispersion D_{j}
- More buildings drive output gain, \& Developer profits fall suggesting τ reflects rent-seeking
- Results robust to three available divisions of MV and LV, doubling or removing congestion
- 40\% remote work: Output gains scale down linearly with remote work
- Only use young buildings ≤ 10 years old: similar gains, avoids outdated regulations

$\% \Delta$ from 2018 steady state	Baseline	Remote Work	New Buildings
Output	3.0%	1.5%	1.4%
Employment	-0.8%	-0.8%	-0.3%
Building Stock	17%	19%	8.4%
Developer Profits	-2.8%	-1.1%	-1.5%
Output, holding building allocation fixed	0.2%	-0.4%	0.1%
Consumption Equivalent Gain	1.6%	0.8%	0.8%

Baseline deregulation: Change in labor relative to 2018 steady state

\% Change

$\square-0.0$ to 1.0
$\square-1.0$ to -0.0
$\square-1.6$ to -1.0
$\square-2.7$ to -1.6
\square

- People leave already-deregulated Texas and South
- Largest population gain in major metro (LA) $<2.5 \%$

Local Deregulation: Relax Floor Area Ratio (FAR) in NYC

- Project model distortions onto actual floor area ratios (FAR): $\log \tau_{z}=\rho \log \left(F A R_{z}\right)+\epsilon_{z}$

Local Deregulation: Relax Floor Area Ratio (FAR) in NYC

- Project model distortions onto actual floor area ratios (FAR): $\log \tau_{z}=\rho \log \left(F A R_{z}\right)+\epsilon_{z}$
- Then compute distortions if FAR set to loosest value

Local Deregulation: Relax Floor Area Ratio (FAR) in NYC

- Project model distortions onto actual floor area ratios (FAR): $\log \tau_{z}=\rho \log \left(F A R_{z}\right)+\epsilon_{z}$
- Then compute distortions if FAR set to loosest value

$\tau_{z} \quad$ Least regulated
- Most regulated

Local Deregulation: Relax Floor Area Ratio (FAR) in NYC

- Project model distortions onto actual floor area ratios (FAR): $\log \tau_{z}=\rho \log \left(F A R_{z}\right)+\epsilon_{z}$
- Then compute distortions if FAR set to loosest value

Local Deregulation: Relax Floor Area Ratio (FAR) in NYC

- Project model distortions onto actual floor area ratios (FAR): $\log \tau_{z}=\rho \log \left(F A R_{z}\right)+\epsilon_{z}$
- Then compute distortions if FAR set to loosest value

$$
\begin{aligned}
& \Delta Y_{N Y C}=+1.8 \% \\
& \Delta B_{N Y C}=+6.1 \%
\end{aligned}
$$

Conclusion

Contributions:

- Develop spatial model of commercial land use regulations
- Identify distortions for each commercial property
- Validate against hand-collected zoning code features
- Moving all cities to least stringent regulations in U.S. yields large welfare/output gains In progress:
- Quantifying impact of regulations on low income households and homelessness

Thank you!

Parcel i Developer's Problem

- Parcel i defined by
x_{i} : Land square-footage
p_{i} : Price per building square-foot (e.g. distance to interstate)
q_{i} : Improvement cost (e.g. bedrock vs. mud)
τ_{i} : Regulatory distortion (virtual wedge \rightarrow does not result in payment/transfer of resources)
- Rent building, buildings depreciate fully at rate δ_{b} ("one-hoss-shay")
- If building depreciates, rebuild by investing in improvements $m_{i, t}$ subject to zoning τ_{i} :

e.g. FAR: $\tau_{i}=\left\{\begin{array}{ll}1 & \text { if } B S F_{i} / x_{i} \leq \bar{H} \\ 0 & \text { otherwise }\end{array} \rightarrow \tau_{i}\right.$ parcel-level constant to capture multi-faceted zoning
$-\tau_{i}$ distorts m_{i}^{*}, but no τ_{i} in profits: $1 \cdot \beta p_{i} m_{i}^{* \gamma} x_{i}^{1-\gamma}-q_{i} m_{i}^{*} \quad[\approx$ Lagrange multiplier]

CoreLogic Dataset

- Overview
- Address-level (Parcel-level) commercial tax assessor data, 2009-2018

CoreLogic Dataset

- Overview
- Address-level (Parcel-level) commercial tax assessor data, 2009-2018
- Parcel i data includes:
- 3 divisions of total value into improvements (cost of materials/labor) \& land

Total Value of Property $\left(T V_{i}\right)=$ Improvement Value $\left(M V_{i}\right)+$ Land Value $\left(L V_{i}\right)$

- Land square footage x_{i}
- Alphanumeric zoning codes ("C8", "M5") that reflect local regulations
- Building square footage $B S F_{i}$ for subset of properties \& age a_{i}

CoreLogic Dataset

- Overview
- Address-level (Parcel-level) commercial tax assessor data, 2009-2018
- Parcel i data includes:
- 3 divisions of total value into improvements (cost of materials/labor) \& land

Total Value of Property $\left(T V_{i}\right)=$ Improvement Value $\left(M V_{i}\right)+$ Land Value $\left(L V_{i}\right)$

- Land square footage x_{i}
- Alphanumeric zoning codes ("C8", "M5") that reflect local regulations
- Building square footage $B S F_{i}$ for subset of properties \& age a_{i}
- Challenge
- Map local regulations into quantitative measure of distortions
- Our approach: write down builder's problem for parcel i to structurally identify distortions
- Model regulatory distortions as a wedge in the builder's problem

Robustness

- We crucially rely on Corelogic's split of property value into land and improvements:

$$
\text { TotalValue }(T V)=\text { LandValue }(L V)+\text { ImprovementValue }(I V)
$$

- Our dataset includes 3 methods: assessed, market, CoreLogic calculated
- Each valuation relies on different methods
- Replacement cost method often used to value structures
- Land values based on vacant lots of redevelopments
- Our baseline output gain under each of these three methods are remarkably similar

Valuation method:	Assessed	Market	CoreLogic Calculated (Benchmark)
Output gain from Midland, TX zoning	$+2.9 \%$	$+3.2 \%$	$+3.0 \%$

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i in region (city) j defined by
x_{i} : Land square-footage
z_{i} : Efficiency of building square-feet
p_{j} : City j building price
$q_{i}:$ Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion (modeled as a wedge)

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i in region (city) j defined by
x_{i} : Land square-footage
z_{i} : Efficiency of building square-feet
p_{j} : City j building price
$q_{i}:$ Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion (modeled as a wedge)

- No regulation: use land \& improvements m_{i} to create building square footage $\left(B S F_{i}\right)$

$$
\max _{m_{i}} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}
$$

- "One-hoss shay" depreciation rate δ_{b}, developer then uses m_{i} to build new structure

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i in region (city) j defined by
x_{i} : Land square-footage
z_{i} : Efficiency of building square-feet
p_{j} : City j building price
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion (modeled as a wedge)

- Regulation: $\tau_{i}=1$ is unregulated, $\tau_{i}=0$ is construction ban

$$
\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}
$$

Modeling Commercial Building Regulation

- Developer's problem.

Developer owns commercial property i in region (city) j defined by
x_{i} : Land square-footage
z_{i} : Efficiency of building square-feet
p_{j} : City j building price
q_{i} : Cost of construction ("improvements") m_{i}
τ_{i} : Regulatory distortion (modeled as a wedge)

- Regulation: $\tau_{i}=1$ is unregulated, $\tau_{i}=0$ is construction ban

$$
\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}
$$

- τ_{i} is wedge between unconstrained marginal product of improvements m_{i} \& marginal cost
- FOC implies $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta p_{j} z_{i} B S F_{i}}$

Interpretation of regulatory distortion τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}$

- What τ_{i} is.

Anything that restricts building size, conditional on factor prices p_{j}, q_{i}

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.

Interpretation of regulatory distortion τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i}$

- What τ_{i} is.

Anything that restricts building size, conditional on factor prices p_{j}, q_{i}

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.
- What τ_{i} is not.

Not anything that enters building prices p_{j} (e.g. local building demand)
Not anything that enters construction cost q_{i}

- Restrictions on building techniques (Schmitz (2020): prefab)
- Difficulty of building

Identification of τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \rightarrow$ FOC: $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta p_{j} z_{i} B S F_{i}}$

- Numerator of τ_{i} is improvement value (cost of structures), $M V_{i}=q_{i} m_{i}$, observed in CL
- Challenge is building square feet $\left(B S F_{i}\right)$ not observed for all parcels, z_{i} unobserved

Identification of τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \rightarrow$ FOC: $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta p_{j} z_{i} B S F_{i}}$

- Numerator of τ_{i} is improvement value (cost of structures), $M V_{i}=q_{i} m_{i}$, observed in CL
- Challenge is building square feet $\left(B S F_{i}\right)$ not observed for all parcels, z_{i} unobserved
- Proceed by defining denominator of τ_{i} as building value, $B V_{i}=p_{j} z_{i} B S F_{i}$

Identification of τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \rightarrow$ FOC: $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta B V_{i}}$

- Numerator of τ_{i} is improvement value (cost of structures), $M V_{i}=q_{i} m_{i}$, observed in CL
- Challenge is building square feet $\left(B S F_{i}\right)$ not observed for all parcels, z_{i} unobserved
- Proceed by defining denominator of τ_{i} as building value, $B V_{i}=p_{j} z_{i} B S F_{i}$
- Model then relates $B V_{i}$ to observed total ($T V_{i}$) \& improvement value $\left(M V_{i}\right)$
- This insight allows us to identify τ_{i} for all buildings in U.S.

Identification of τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \rightarrow$ FOC: $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta B V_{i}}$

- After building depreciates, developer builds new structure implying SS total value:

$$
T V_{i}=\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta} B V_{i}-\delta_{b} \frac{M V_{i}}{1-\beta}
$$

Identification of τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \rightarrow$ FOC: $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta B V_{i}}$

- After building depreciates, developer builds new structure implying SS total value:

$$
T V_{i}=\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta} B V_{i}-\delta_{b} \frac{M V_{i}}{1-\beta}
$$

- Solve for building value $B V_{i}=g\left(T V_{i}, M V_{i}\right)$ \& substitute into denominator of τ_{i}

Identification of τ_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} \beta p_{j} z_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-q_{i} m_{i} \rightarrow$ FOC: $\tau_{i}=\frac{q_{i} m_{i}}{\gamma \beta B V_{i}}$

- After building depreciates, developer builds new structure implying SS total value:

$$
T V_{i}=\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta} B V_{i}-\delta_{b} \frac{M V_{i}}{1-\beta}
$$

- Solve for building value $B V_{i}=g\left(T V_{i}, M V_{i}\right) \&$ substitute into denominator of τ_{i}
- Closed-form regulatory distortion $\left(\tau_{i}\right)$ depends on improvement share $\frac{M V_{i}}{T V_{i}}$:

$$
\tau_{i}=F\left(\frac{M V_{i}}{T V_{i}}\right), \quad F^{\prime}(\cdot)>0
$$

Identification of τ_{i}

- Regulatory distortion $\left(\tau_{i}\right)$ is increasing in improvement share $\frac{M V_{i}}{T V_{i}}$:

$$
\tau_{i}=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta} \frac{M V_{i}}{T V_{i}}\right)}{\gamma \beta\left(1+\frac{\delta_{b}}{1-\beta} \frac{M V_{i}}{T V_{i}}\right)}
$$

- Low improvement share implies low τ_{i}, more distorted
- For example, a small building on valuable land \rightarrow strict regulation

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_{i} component $\left(T_{j}\right) \&$ dispersion in τ_{i} component $\left(D_{j}\right)$

$$
\max _{m_{j}} p_{j} \cdot T_{j} \cdot B S F_{j}\left(D_{j}, m_{j}\right)-m_{j}
$$

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_{i} component $\left(T_{j}\right) \&$ dispersion in τ_{i} component $\left(D_{j}\right)$

$$
\max _{m_{j}} p_{j} \cdot T_{j} \cdot B S F_{j}\left(D_{j}, m_{j}\right)-m_{j}
$$

$$
T_{j}=\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}}
$$

- Reflects average city-wide distortion
- $T_{j}=\bar{\tau}$ if common $\tau_{i}=\bar{\tau}$
- Focus of counterfactuals

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_{i} component $\left(T_{j}\right)$ \& dispersion in τ_{i} component $\left(D_{j}\right)$

$$
\max _{m_{j}} p_{j} \cdot T_{j} \cdot B S F_{j}\left(D_{j}, m_{j}\right)-m_{j}
$$

$$
T_{j}=\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}}
$$

$$
D_{j}=\left(\frac{\sum_{i \in j} M V_{i} / \tau_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}}}\right) /\left(\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}}}\right)^{\gamma}
$$

- Reflects average city-wide distortion
- Reflects τ_{i} dispersion within city
- $T_{j}=\bar{\tau}$ if common $\tau_{i}=\bar{\tau}$
- Focus of counterfactuals
- Part regulation, part noise
- Hold fixed today [paper alters D_{j}]

Identification of production technology $\left(B S F_{i}=m_{i}^{\gamma} x_{i}^{1-\gamma}\right)$

- Challenge: improvement exponent γ always multiplies distortion
- At parcel-level, recover product of $\tau_{i} \cdot \gamma$
- At city-level, recover product of $T_{j} \cdot \gamma$

Identification of production technology $\left(B S F_{i}=m_{i}^{\gamma} x_{i}^{1-\gamma}\right)$

- Challenge: improvement exponent γ always multiplies distortion
- At parcel-level, recover product of $\tau_{i} \cdot \gamma$
- At city-level, recover product of $T_{j} \cdot \gamma$
- Solution: Treat city with the highest $T_{j} \cdot \gamma$ as a "deregulated benchmark" where $T_{j}=1$
- Recover lower bound for γ (i.e. $T_{j}<1$ implies a higher γ)

Identification of production technology $\left(B S F_{i}=m_{i}^{\gamma} x_{i}^{1-\gamma}\right)$

- Challenge: improvement exponent γ always multiplies distortion
- At parcel-level, recover product of $\tau_{i} \cdot \gamma$
- At city-level, recover product of $T_{j} \cdot \gamma$
- Solution: Treat city with the highest $T_{j} \cdot \gamma$ as a "deregulated benchmark" where $T_{j}=1$
- Recover lower bound for γ (i.e. $T_{j}<1$ implies a higher γ)
- We set $T_{j}=1$ for Midland, TX (aka the 'tall city'), implies $\gamma=0.92$
- High γ, Cobb-Douglas both in line with building production literature

Identification of production technology $\left(B S F_{i}=m_{i}^{\gamma} x_{i}^{1-\gamma}\right)$

- Challenge: improvement exponent γ always multiplies distortion
- At parcel-level, recover product of $\tau_{i} \cdot \gamma$
- At city-level, recover product of $T_{j} \cdot \gamma$
- Solution: Treat city with the highest $T_{j} \cdot \gamma$ as a "deregulated benchmark" where $T_{j}=1$
- Recover lower bound for γ (i.e. $T_{j}<1$ implies a higher γ)
- We set $T_{j}=1$ for Midland, TX (aka the 'tall city'), implies $\gamma=0.92$
- High γ, Cobb-Douglas both in line with building production literature
- Given γ recover $\tau_{i}=\frac{M V_{i}}{\gamma \beta B V_{i}}$ at parcel level

Identification of production technology $\left(B S F_{i}=m_{i}^{\gamma} x_{i}^{1-\gamma}\right)$

- Challenge: improvement exponent γ always multiplies distortion
- At parcel-level, recover product of $\tau_{i} \cdot \gamma$
- At city-level, recover product of $T_{j} \cdot \gamma$
- Solution: Treat city with the highest $T_{j} \cdot \gamma$ as a "deregulated benchmark" where $T_{j}=1$
- Recover lower bound for γ (i.e. $T_{j}<1$ implies a higher γ)
- We set $T_{j}=1$ for Midland, TX (aka the 'tall city'), implies $\gamma=0.92$
- High γ, Cobb-Douglas both in line with building production literature
- Given γ recover $\tau_{i}=\frac{M V_{i}}{\gamma \beta B V_{i}}$ at parcel level \rightarrow next, many litmus tests of $\tau_{i} \& T_{j}$

Sample Selection

- Keep Parcels Where:
- $M V_{i}, T V_{i}$, and x_{i} all recorded
- $M V_{i} / T V_{i} \in(0.01,0.99)$
- Outcome of Filtering:
- End up with parcels worth 72% of aggregate $T V_{i}$

What is τ ?

- Distortion: Anything that causes a landlord to build less than they want to, conditional on factor prices
- Floor Area Ratios
- Setbacks
- Height limits
- Environmental review boards
- Threat of lawsuits
- Regulatory "tax": Any cost that doesn't act as a building improvement
- Payments for local improvements (sewers, schools)
- Litigation

What is τ not?

- Prices: Anything that enters z_{i} or $r_{b, j, t}$
- Restrictions on what you can build (factories vs office towers)
- Property taxes
- Costs: Anything that enters q_{i}
- Restrictions on building techniques (Schmitz (2020): prefab)
- Difficulty of building (bedrock)

Household Problem

- Chooses labor $L_{j, t}$ and capital $K_{j, t}$ across cities $j \in J$, capital investment $i_{k, t}$
- Earns wages $w_{j, t}$, rents $r_{k, t}$, and profits from final-good firms $\pi_{j, f, t}$ and landlords $\pi_{j, b, t}$
- Maximizes utility:

$$
\max _{c_{t}, i_{j, j, t}, L_{j, t}} \sum_{t=0}^{\infty} \beta^{t}\left(\frac{c_{t}^{1-\sigma}}{1-\sigma}-\frac{1}{1+\frac{1}{\eta}} \sum_{j}\left(\frac{L_{j, t}}{a_{j}\left(L_{j, t}, X_{j, t}\right)}\right)^{1+\frac{1}{\eta}}\right)
$$

subject to:

$$
\begin{gathered}
c_{t}+i_{k, t}=\sum_{j}\left(\pi_{j, b, t}+\pi_{j, f, t}+w_{j, t} L_{j, t}+r_{k, t} K_{j, t}\right) \\
K_{t+1}=i_{k, t}+\left(1-\delta_{k}\right) K_{t} \\
K_{t}=\sum K_{j, t}
\end{gathered}
$$

Final Goods

- Combine labor L_{j}, buildings B_{j}, capital K_{j} at city level to produce final good
- Pay a national rental rate for capital r_{k} and city-specific wages w_{j} and building rents $r_{b, j}$

$$
\pi_{j, f}=\max _{K_{j, t} L_{j, t}, B_{j, t}} \underbrace{A_{j} L_{j, t}^{\alpha} B_{j, t}^{\chi_{j}} K_{j, t}^{1-\alpha-\chi_{j}}}_{Y_{j, t}}-w_{j, t} L_{j, t}-r_{k, j, t} K_{j, t}-r_{b, j, t} B_{j, t}
$$

- Building share $\chi_{j}=0$ in remote work "region" and constant elsewhere

Identifying Improvement Share γ and Zoning Distortions

- CoreLogic: total value $T V_{i}$, improvement value $M V_{i}$, building age $\Rightarrow \delta_{b}$, and $\beta=\frac{1}{1+r}$
- Can recover improvement share γ multiplied by zoning distortion $T_{j} \ldots$.
- ... but cannot separate returns to scale γ and distortion T_{j} without more assumptions
- Intuition: low T_{j} lowers improvements, pushes $M V / T V$ away from optimum implied by improvement share
- Our approach:
- Treat city with the highest $T_{j} \gamma$ (Midland TX) as a "deregulated benchmark" Dearalis
- Assume undistorted developer's problem in that city, thus $T_{j}=1$
- Recover conservative lower bound for γ (i.e. $T_{j}<1$ implies a higher γ)
- Identifying Parcel Distortions:
- Can use T_{j}, γ, and parcel-level $M V, T V$ to get τ_{i}

Identification of γ : Part 1

- Steady state: landlord will expend same MV each time building falls

$$
V_{f}(\tau, z, q, x)=\beta V(B, \tau, z, q, x)-\underbrace{q m}_{M V}
$$

- TV is therefore NPV of payments minus NPV of costs

$$
T V=\frac{r_{b, j} B}{1-\beta}-\frac{\delta_{b} q m}{1-\beta}
$$

- $B V$ is NPV of payments to building before it depreciates:

$$
B V=\frac{r_{b, j} B}{1-\beta\left(1-\delta_{b}\right)}
$$

- MV:

$$
M V=\beta \gamma \tau B V
$$

Identification of γ : Part 2

- Combine to get:

$$
\begin{gathered}
T V=\frac{r_{b, j} B}{1-\beta}-\frac{\delta_{b} M V}{1-\beta} \\
B V=\frac{r_{b, j} B}{1-\beta\left(1-\delta_{b}\right)} \\
T V=\left(\frac{1-\beta\left(1-\delta_{b}\right)-\delta_{b} \beta \gamma \tau}{1-\beta}\right) \frac{M V}{\tau \beta \gamma} \\
\gamma \tau=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta}\right) \frac{M V}{T V}}{\left(\beta+\frac{\delta_{b} \beta}{1-\beta} \frac{M V}{T V}\right)}
\end{gathered}
$$

Identification of γ : Part 3

- Use $C_{i} \propto M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}}$ and get:

$$
\begin{gathered}
T_{j}=\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} / \tau_{i}} \\
T_{j}=\frac{\sum_{i \in j} M V_{i}}{\sum_{i \in j} M V_{i} \gamma\left(\beta+\frac{\delta_{b} \beta}{1-\beta} \frac{M V_{i}}{T V_{i}}\right) /\left(\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta}\right) \frac{M V_{i}}{T V_{i}}\right)} \\
=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta}\right) \sum_{i \in j} M V_{i}}{\beta \gamma\left(\sum_{i \in j} T V_{i}+\frac{\delta_{b}}{1-\beta} \sum_{i \in j} M V_{i}\right)}
\end{gathered}
$$

- Finally:

$$
T_{j}=T_{j} \frac{\sum_{i \in j} T V}{\sum_{i \in j} T V}=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta}\right) \sum_{i \in j} M V}{\beta \gamma\left(\sum_{i \in j} T V+\frac{\delta_{b}}{1-\beta} \sum_{i \in j} M V\right)} \frac{\sum_{i \in j} T V}{\sum_{i \in j} T V}=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta}\right) \frac{\sum_{i \in j} M V}{\sum_{i \in j} T V}}{\beta \gamma\left(1+\frac{\delta_{b}}{1-\beta} \frac{\sum_{i \in j} M V}{\sum_{i \in j} T V}\right)}
$$

GE Model: Standard Parameters

Parameter	Description	Value	Source
β	Discounting	0.96	Standard
σ	CRRA	2	Standard
η	Labor Curvature	2	Keane and Rogerson (2012)
δ_{k}	Depreciation	0.032	McGrattan (2020)
α	Labor Share	0.594	Penn World Table (US, 2018)

GE Model: Key Variables

Variable	Description	Source
Y	Aggregate GDP	NIPA Table 1.1.6
Y_{j}	MSA GDP	BEA
$\sum_{j} i_{k, j}$	Equipment+IP Investment	NIPA Table 1.1.6
L_{j}	MSA Labor Supply	ACS
$L_{r} / \sum_{j} L_{j}$	Remote Labor Supply Share	ACS
$w_{r} L_{r} / \sum_{j} w_{j} L_{j}$	Remote Wage Bill Share	ACS

GE Model: Identification

- Remote Work:
- Allocate labor L_{r} based on ACS labor share $\rho_{L}=L_{r} / \sum_{j} L_{j}$
- Allocate GDP Y_{r} based on ACS wage share $\rho_{W}=w_{r} L_{r} / \sum_{j} w_{j} L_{j}$
- Scale L_{j} and Y_{j} in other regions by $\left(1-\rho_{L}\right),\left(1-\rho_{W}\right)$
- Factor Shares:
- Back out χ in non-remote regions by subtracting inferred payments to other factors:

$$
\chi_{n}=\frac{(1-\alpha) \sum_{j} Y_{j}-r_{k} \sum_{j} i_{k, j} / \delta_{k}}{\sum_{j \neq r} Y_{j}} \sim 0.15
$$

GE Model: Identification

- Supply:
- Building supply in each period can be expressed as a supply shifter Ψ_{j} :

$$
\Psi_{j}=T^{\frac{\gamma}{1-\gamma}} D^{\frac{1}{1-\gamma}} \delta_{b} C_{j}(\beta \gamma)^{\frac{\gamma}{1-\gamma}}
$$

- Use GE model, not CoreLogic, to back out level of supply shifter Ψ_{j} (property taxes, Prop 13 mean CoreLogic building values will be lower than true factor payments)

$$
\underbrace{p_{j}^{\frac{1}{1-\gamma}} \Psi_{j}}_{p_{j} B_{j}^{N}}=\frac{\chi_{j} Y_{j}}{1-\beta\left(1-\delta_{b}\right)}
$$

- Demand:
- Demand for improvements is as follows:

$$
q_{j} m_{j}=T_{j} \gamma \beta p_{j} B_{j}^{N}
$$

Identifying Building Parameters: δ_{b}, p_{j}

- δ_{b} : Depreciation identified from average age of buildings \bar{a} :

$$
\delta_{b}=\frac{1}{\bar{a}}
$$

- p_{j} : Normalized to average price per building square foot identified from buildings with BSF:

$$
p_{j}=\frac{\sum_{i \in j} B V_{i}}{\sum_{i \in j} B S F_{i}}
$$

Validation: NYC FAR

- First Test: NYC Floor Area Ratios (FAR)
- Aggregate τ_{i} into zoning codes z (e.g. $z \in\{C 1, C 2, \ldots\}$ in NYC):

$$
\tau_{z}=\frac{\sum_{i \in z} M V_{i}}{\sum_{i \in z} M V_{i} / \tau_{i}}
$$

- Test theory by comparing floor area ratios $\left(\log F A R_{z}\right)$ vs. our model distortion $\log \tau_{z}$
- Expectation: higher (less-regulating) FAR should have higher (less-regulating) τ
- Result: positive correlation between statutory and model-based regulation

Variables	(1)
$\log \tau_{z}$	

NYC: Log Model Distortion τ_{z} vs Log Statutory FAR

DC: Log Model Distortion τ_{z} vs Log Statutory Height Limits

Validation: Cities

- Second Test: Maps and Time Series
- Does T_{j} align with our priors about which cities are more regulated?
- Expectation: cities in California should be highly regulated; cities in Texas should be less so
- e.g. Houston, TX has no "zoning"
...but still has other deed restrictions, historic districts, ordinances that limit building development
- Result: Houston and Dallas less regulated than SF and LA

Time Series of Aggregate Distortion T_{j} in Major MSAs

Validation: FAR

- Third Test: Business Districts
- Plot τ_{z} in two well-known regions: San Francisco, Manhattan
- Litmus test/prior expectation: Center business districts should be less regulated
- Result: Parcels in business districts generally have higher τ_{z}

San Francisco Distortions

Model distortion

Back

SF Height Limit Zoning Map, 2021

Manhattan Distortions

Equilibrium

- An equilibrium in this economy is:
- Prices $\left\{\left\{r_{b, j, t}, w_{j, t}\right\}_{j \in J,} r_{k, t}\right\}_{t=0}^{\infty}$
- Quantities $\left\{\left\{Y_{j, t}, K_{j, t}, L_{j, t}, B_{j, t}, i_{k, j, t}\left\{m_{i, t}, B_{i, t}^{N}\right\}_{i \in j_{j, t}}\right\}_{j \in J}, c_{t}\right\}_{t=0}^{\infty}$
- Decision rules
- Such that:
- Given prices, the stand-in household maximizes utility
- Given prices, firms maximize profits
- Markets clear and the laws of motion and resource constraint hold:

$$
\begin{gathered}
B_{j, t+1}=\left(1-\delta_{b}\right) B_{j, t}+\sum_{i \in j_{\delta, t}} B_{i, t}^{N} \\
c_{t}-\sum_{j}\left(i_{k, j, t}+\sum_{i \in j_{\delta, t}} q_{i} m_{j, t}\right)=\sum_{j} Y_{j}
\end{gathered}
$$

Aggregation Back

- Landlord problems aggregate to a city-level landlord problem:

$$
\max _{m_{j}} \beta T_{j} p_{j} \underbrace{D_{j}\left(\delta_{b} C_{j}\right)^{1-\gamma} m_{j}^{\gamma}}_{B_{j}^{N}}-\underbrace{m_{j}}_{M V_{j}}
$$

- Where:

Aggregation Back

- Landlord problems aggregate to a city-level landlord problem:

$$
\max _{m_{j}} \beta T_{j} p_{j} \underbrace{D_{j}\left(\delta_{b} C_{j}\right)^{1-\gamma} m_{j}^{\gamma}}_{B_{j}^{N}}-\underbrace{m_{j}}_{M V_{j}}
$$

- Where:

$$
\text { (Parcel Efficiency) } C_{i}=z_{i}^{\frac{1}{1-\gamma}} x_{i} q_{i}^{\frac{\gamma}{1-\gamma}} \propto M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}}
$$

Aggregation Back

- Landlord problems aggregate to a city-level landlord problem:

$$
\max _{m_{j}} \beta T_{j} p_{j} \underbrace{D_{j}\left(\delta_{b} C_{j}\right)^{1-\gamma} m_{j}^{\gamma}}_{B_{j}^{N}}-\underbrace{m_{j}}_{M V_{j}}
$$

- Where:

$$
\begin{aligned}
\text { (Parcel Efficiency) } C_{i} & =z_{i}^{\frac{1}{1-\gamma}} x_{i} q_{i}^{\frac{\gamma}{1-\gamma}} \propto M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}} \\
\text { (Aggregate Efficiency) } C_{j} & =\sum_{i \in j} C_{i}
\end{aligned}
$$

Aggregation

- Landlord problems aggregate to a city-level landlord problem:

$$
\max _{m_{j}} \beta T_{j} p_{j} \underbrace{D_{j}\left(\delta_{b} C_{j}\right)^{1-\gamma} m_{j}^{\gamma}}_{B_{j}^{N}}-\underbrace{m_{j}}_{M V_{j}}
$$

- Where:

$$
\begin{aligned}
\text { (Parcel Efficiency) } C_{i} & =z_{i}^{\frac{1}{1-\gamma}} x_{i} q_{i}^{\frac{\gamma}{1-\gamma}} \propto M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}} \\
\text { (Aggregate Efficiency) } C_{j} & =\sum_{i \in j} C_{i} \\
\text { (Dispersion) } D_{j} & =\left(\frac{\sum_{i \in j} \tau_{i}^{\frac{\gamma}{1-\gamma}} C_{i}}{\sum_{i \in j} C_{i}}\right) /\left(\frac{\sum_{i \in j} \tau_{i}^{\frac{1}{1-\gamma}} C_{i}}{\sum_{i \in j} C_{i}}\right)^{\gamma}
\end{aligned}
$$

Aggregation

```
Ba+
```

- Landlord problems aggregate to a city-level landlord problem:

$$
\max _{m_{j}} \beta T_{j} p_{j} \underbrace{D_{j}\left(\delta_{b} C_{j}\right)^{1-\gamma} m_{j}^{\gamma}}_{B_{j}^{N}}-\underbrace{m_{j}}_{M V_{j}}
$$

- Where:

$$
\begin{aligned}
\text { (Parcel Efficiency) } C_{i} & =z_{i}^{\frac{1}{1-\gamma}} x_{i} q_{i}^{\frac{\gamma}{1-\gamma}} \propto M V_{i} / \tau_{i}^{\frac{1}{1-\gamma}} \\
\text { (Aggregate Efficiency) } C_{j} & =\sum_{i \in j} C_{i} \\
\text { (Dispersion) } D_{j} & =\left(\frac{\sum_{i \in j} \tau_{i}^{\frac{\gamma}{1-\gamma}} C_{i}}{\sum_{i \in j} C_{i}}\right) /\left(\frac{\sum_{i \in j} \tau_{i}^{\frac{1}{1-\gamma}} C_{i}}{\sum_{i \in j} C_{i}}\right)^{\gamma} \\
\text { (Aggregate Distortion) } T_{j} & =\sum_{i \in j} \tau_{i}^{\frac{1}{1-\gamma}} C_{i} / \sum_{i \in j} \tau_{i}^{\frac{\gamma}{1-\gamma}} C_{i}
\end{aligned}
$$

Identifying Improvement Share γ and Distortions τ_{i}

- Deregulated benchmark: Midland, TX (oil producing MSA)
- Implied improvement share $\gamma \sim 0.92$, i.e. near linear
- Arguments for near-linear production function:
- Glaeser, Gyourko, and Saks (2005): average cost per BSF very flat for different building sizes
- Intuition: can always add more floors
- With γ identified, can recover τ_{i} at parcel level:

$$
\tau_{i}=\frac{\left(\frac{1-\beta\left(1-\delta_{b}\right)}{1-\beta}\right) \frac{M V_{i}}{T V_{i}}}{\gamma\left(\beta+\frac{\delta_{b} \beta}{1-\beta} \frac{M V_{i}}{T V_{i}}\right)}
$$

Identifying Amenities

- Internal IV
- Re-solve model setting TFP and amenities equal in all regions
- Use counterfactual congestion $\widehat{L / X}$ as IV for real congestion
- Recover impact of congestion on amenities
- Results:

$$
\begin{equation*}
\log a_{j}=\underbrace{\mu}_{\substack{-0.53^{* * *} \\[0.07]}} \log \left(L_{j} / X_{j}\right)+e_{j} \tag{1}
\end{equation*}
$$

Back

Baseline: Change in Labor L_{j} Relative to Initial SS

Losers are already-deregulated Texas and South; Winners are highly regulated coast

Exogenous Amenities

As congestion worsens in some cities, it improves in others

Commercial Developers

- Owns plot of land i with square footage x_{i}, zoning distortion τ_{i}
- $\tau_{i}=1$ means no regulation, $\tau_{i}=0$ means construction ban
- Construction:
- Buy improvements (concrete, glass, labor) m_{i} at price q_{i}
- Combine w/ land to make building square footage BSF
- Sell at price per square foot p_{i}

Developer's problem: $\max _{m_{i}} \tau_{i} p_{i} \underbrace{m_{i}^{\gamma} x_{i}^{1-\gamma}}_{B S F_{i}}-\underbrace{q_{i} m_{i}}_{M V_{i}}$ Developers' profits: $\quad \pi=1 p_{i} m_{i}^{\gamma} x_{i}^{1-\gamma}-q_{i} r$

- τ_{i} only distorts FOC (e.g. height limit \bar{B} alters investment, but creates no revenue)

[^0]
[^0]: Interpreting Distortions

