The Impact of Commercial Real Estate Regulations on U.S. Output

Fil Babalievsky Census Bureau

Kyle F. Herkenhoff

Federal Reserve Bank of Minneapolis, University of Minnesota, IZA, & NBER

Lee E. Ohanian

University of California Los Angeles, Federal Reserve Bank of Minneapolis, Hoover Institute, & NBER

Edward C. Prescott

Arizona State University, Federal Reserve Bank of Minneapolis, & NBER

March 27, 2024

Motivation.

- Several studies of US *residential* land use regulations find substantial effects on U.S. economy (Herkenhoff Ohanian Prescott 2018, Hsieh Moretti 2019)
- Commercial regulation is conceptually similar, yet little known about impact on U.S. economy
- Challenge is commercial regulation is multi-dimensional, local & allows exemptions
- Infeasible to consistently codify across cities or measure bite without model

Motivation.

- Several studies of US *residential* land use regulations find substantial effects on U.S. economy (Herkenhoff Ohanian Prescott 2018, Hsieh Moretti 2019)
- Commercial regulation is conceptually similar, yet little known about impact on U.S. economy
- Challenge is commercial regulation is multi-dimensional, local & allows exemptions
- Infeasible to consistently codify across cities or measure bite without model

This paper.

- Quantify effects of commercial regulation using CoreLogic's address-level tax valuations
- Develop GE model with commercial construction sector to estimate *address-level regulatory distortion* for all U.S. buildings

Economic logic.

- When land is costly, substitute towards construction (build taller)
- Model infers regulatory distortion whenever valuable land has small building
- We show model distortions correlate strongly with hand-collected zoning features

Economic logic.

- When land is costly, substitute towards construction (build taller)
- Model infers regulatory distortion whenever valuable land has small building
- We show model distortions correlate strongly with hand-collected zoning features

Results.

- Moving all cities to least strict regulations in US yields 3% GDP & 1.5% CEV gain
- Highly regulated CA cities (LA, SF) benefit vs. less regulated TX cities (Dallas, Houston)
- Still large gains with 40% remote work share & doubling negative congestion externality

General equilibrium model

- One-sector optimal growth model w/ regions (j) & commercial buildings in production
- Regions are MSAs that differ by TFP and amenities with negative congestion externality
- One region is remote work sector which does not use buildings in production

General equilibrium model

- One-sector optimal growth model w/ regions (j) & commercial buildings in production
- Regions are MSAs that differ by TFP and amenities with negative congestion externality
- One region is remote work sector which does not use buildings in production

Household:
$$\max_{c_{t},i_{t},K_{j,t},L_{j,t}} \sum_{t=0}^{\infty} \beta^{t} \left(\frac{c_{t}^{1-\sigma}}{1-\sigma} - \frac{1}{1+\frac{1}{\eta}} \sum_{j=1}^{N} \left(\frac{L_{j,t}}{a_{j}(L_{j,t}/X_{j})} \right)^{1+\frac{1}{\eta}} \right)$$
s.t. $c_{t} + i_{t} = \sum_{j} \left(\pi_{j,b,t} + \pi_{j,f,t} + w_{j,t}L_{j,t} + r_{k,t}K_{j,t} \right)$
Firm *j*:
$$\max_{K_{j,t},L_{j,t},B_{j,t}} A_{j}L_{j,t}^{\alpha}B_{j,t}^{\chi_{j}}K_{j,t}^{1-\alpha-\chi_{j}} - w_{j,t}L_{j,t} - r_{k,t}K_{j,t} - r_{b,j,t}B_{j,t}$$
Developer *j*:
$$\max_{m_{j,t}} p_{j,t} \cdot T_{j,t} \cdot B_{j,t}(D_{j,t}, m_{j,t}) - m_{j,t}$$

Developer's problem.

Developer owns commercial property *i* defined by

- x_i : Land square-footage
- pi: Price per-building-square-foot
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion ("virtual" wedge distorts choices but no resource transfer, height limit)

Developer's problem.

Developer owns commercial property *i* defined by

- x_i : Land square-footage
- pi: Price per-building-square-foot
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion ("virtual" wedge distorts choices but no resource transfer, height limit)

No regulation: use land & improvements m_i to create building square footage (BSF_i)

$$\max_{m_i} p_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

FOC implies $\gamma = \frac{q_i m_i}{p_i BSF_i}$ (marginal benefit=marginal cost)

Regulatory limits imply marginal benefit > marginal cost, attribute gap to regulations τ_i

Developer's problem.

Developer owns commercial property *i* defined by

- x_i : Land square-footage
- pi: Price per-building-square-foot
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion ("virtual" wedge distorts choices but no resource transfer, height limit)

Example of a regulation: floor-area ratio limit

$$\max_{m_i} p_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

such that
$$\frac{BSF_i}{x_i} \le \bar{H}$$

Developer's problem.

Developer owns commercial property *i* defined by

- x_i: Land square-footage
- pi: Price per-building-square-foot
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion ("virtual" wedge distorts choices but no resource transfer, height limit)

Example of a regulation: floor-area ratio limit

 $\max_{m_i} \frac{\tau_i p_i}{m_i} \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - \underbrace{q_i m_i}_{MV_i} , \quad \text{e.g. Floor Area Ratio: } \tau_i = \begin{cases} 1 & \text{if } \frac{BSF_i}{x_i} \leq \bar{H} \\ 0 & \text{otherwise} \end{cases}$

Assumption: τ_i is address-level constant, to capture multi-faceted zoning

Developer's problem.

Developer owns commercial property *i* defined by

- x_i : Land square-footage
- pi: Price per-building-square-foot
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion ("virtual" wedge distorts choices but no resource transfer, height limit)

▶ Regulation: $\tau_i = 1$ is unregulated, $\tau_i = 0$ is construction ban

$$\max_{m_i} \frac{\tau_i p_i}{m_i} \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

Developer's problem.

Developer owns commercial property *i* defined by

- x_i: Land square-footage
- pi: Price per-building-square-foot
- q_i : Cost of construction ("improvements") m_i
- τ_i: Regulatory distortion ("virtual" wedge distorts choices but no resource transfer, height limit)

Regulation: $\tau_i = 1$ is unregulated, $\tau_i = 0$ is construction ban

$$\max_{m_i} \tau_i p_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

- FOC implies $\tau_i \gamma = \frac{q_i m_i}{p_i BSF_i}$
- Note τ_i distorts m_i^* but doesn't enter profit (e.g. zoning): $\pi = \mathbf{1} \cdot \beta p_i (m_i^*)^{\gamma} x_i^{1-\gamma} q_i m_i^*$

Construction ban: $\tau_i = 0$

Sandhill road

Menlo Park

Interpretation of regulatory distortion τ_i

Developer's problem:
$$\max_{m_i} \tau_i p_i m_i^{\gamma} x_i^{1-\gamma} - q_i m_i$$

• What τ_i is.

Anything that restricts building size, conditional on factor prices p_i , q_i

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.

Interpretation of regulatory distortion τ_i

Developer's problem:
$$\max_{m_i} \tau_i p_i m_i^{\gamma} x_i^{1-\gamma} - q_i m_i$$

• What τ_i is.

Anything that restricts building size, conditional on factor prices p_i , q_i

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.

• What τ_i is **not**.

Not anything that enters building prices p_i (e.g. local building demand, property taxes) Not anything that enters construction cost q_i

- Restrictions on building techniques (Schmitz (2020): prefab)
- Difficulty of building

Data.

- Address-level tax assessments compiled by CoreLogic
- Divides total property value into improvements & land (e.g., using replacement cost of building):

Total Value of Property (TV) = Improvement Value (MV) +Land Value (LV)

 $q_i m_i = \text{cost of structures}$

Data.

- Address-level tax assessments compiled by CoreLogic
- Divides total property value into improvements & land (e.g., using replacement cost of building):

Total Value of Property (TV) = $\underbrace{\text{Improvement Value (MV)}}_{\text{Land Value (LV)}}$ +Land Value (LV)

 $q_i m_i = \text{cost of structures}$

- ldentifying τ using CoreLogic Data:
 - Model's closed-form solution for regulatory distortion (τ_i) depends on *improvement share* $\frac{MV}{TV}$:

$$au_i = F\left(rac{MV_i}{TV_i}
ight), \ F'(\cdot) > 0$$

- Low improvement share implies low τ_i , more distorted

(e.g. small building on valuable land \rightarrow strict regulation)

- Regulatory distortion (τ_i) is increasing in *improvement share* $\frac{MV_i}{TV_i}$:

$$au_i = rac{ig(rac{1-eta(1-\delta_b)}{1-eta}rac{MV_i}{TV_i}ig)}{\gammaetaig(1+rac{\delta_b}{1-eta}rac{MV_i}{TV_i}ig)}$$

- Low improvement share implies low τ_i , more distorted
- For example, a small building on valuable land \rightarrow strict regulation

Empirically Validating Model Distortions

Key zoning code features.

- Two prominent components of zoning codes include
 - Height limits: caps building height
 - Floor-area-ratio limits: caps building size relative to land size

Empirically Validating Model Distortions

Key zoning code features.

- Two prominent components of zoning codes include
 - Height limits: caps building height
 - Floor-area-ratio limits: caps building size relative to land size

• Comparing model distortion (τ) to data.

- Hand-collect height limits and floor-area-ratios for several cities and compare to au
- If these regulations are important, expect *positive but imperfect* correlation with au
- Model τ includes non-zoning features (*deed restrictions*), & zoning exemptions (*variances*)

Comparing τ to actual zoning codes

1. Distortions align with hand-collected floor-area-ratios (FARs) in NYC

Comparing τ to actual zoning codes

- 1. Distortions align with hand-collected floor-area-ratios (FARs) in NYC
- 2. And hand-collected height limits in DC

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_i component (T_i) & dispersion in τ_i component (D_i)

 $\max_{m_j} p_j \cdot T_j \cdot BSF_j(D_j, m_j) - m_j$

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_i component (T_i) & dispersion in τ_i component (D_i)

$$\max_{m_j} p_j \cdot T_j \cdot BSF_j(D_j, m_j) - m_j$$
$$T_j = \frac{\sum_{i \in j} MV_i}{\sum_{i \in j} MV_i / \tau_i}$$

- Reflects average city-wide distortion
- Takes value $\overline{\tau}$ if all $\tau_i = \overline{\tau}$
- Focus of counterfactuals

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_i component (T_j) & dispersion in τ_i component (D_j)

 $\max_{m_j} p_j \cdot T_j \cdot BSF_j(D_j, m_j) - m_j$ $T_j = \frac{\sum_{i \in j} MV_i}{\sum_{i \in j} MV_i / \tau_i} \qquad D_j = \left(\frac{\sum_{i \in j} MV_i / \tau_i}{\sum_{i \in j} MV_i / \tau_i^{\frac{1}{1-\gamma}}}\right) / \left(\frac{\sum_{i \in j} MV_i}{\sum_{i \in j} MV_i / \tau_i^{\frac{1}{1-\gamma}}}\right)^{\gamma}$

- Reflects average city-wide distortion
- Takes value $\overline{\tau}$ if all $\tau_i = \overline{\tau}$
- Focus of counterfactuals

- **•** Reflects τ_i **dispersion** within city
- Part regulation, part measurement error
- ► Hold <u>fixed</u> today [paper alters D_j]

Which cities are most and least regulated?

Major California cities (LA, SF) more regulated than Texas (Dallas, Houston)

Which cities are most and least regulated?

- Major California cities (LA, SF) more regulated than Texas (Dallas, Houston)
- Least-regulated city is Midland TX; developers in strict zoned cities build 20% less, c.p.

	Name	T_j
	Average regulatory distortion	0.85
Least Regulated City:	Midland, TX ("The Tall City")	1 (Normalized)
	San Diego	0.79
	San Jose	0.80
Major MSAs:	Miami	0.80
	New York	0.86
	Chicago	0.88
	Phoenix	0.89

Counterfactuals

Baseline: All distortions T_i set to loosest U.S. level (Midland, TX), fix dispersion D_i

- More buildings drive output gain, & **Developer profits fall** suggesting τ reflects rent-seeking
- Results robust to three available divisions of MV and LV, doubling or removing congestion

% Δ from 2018 steady state	Baseline
Output	3.0%
Employment	-0.8%
Building Stock	17%
Developer Profits	-2.8%
Output, holding building allocation fixed	0.2%
Consumption Equivalent Gain	1.6%

Counterfactuals

- Baseline: All distortions T_i set to loosest U.S. level (Midland, TX), fix dispersion D_i
 - More buildings drive output gain, & **Developer profits fall** suggesting τ reflects rent-seeking
 - Results robust to three available divisions of MV and LV, doubling or removing congestion
- ► 40% remote work: Output gains scale down linearly with remote work

% Δ from 2018 steady state	Baseline	Remote Work	
Output	3.0%	1.5%	
Employment	-0.8%	-0.8%	
Building Stock	17%	19%	
Developer Profits	-2.8%	-1.1%	
Output, holding building allocation fixed	0.2%	-0.4%	
Consumption Equivalent Gain	1.6%	0.8%	

Counterfactuals

- Baseline: All distortions T_i set to loosest U.S. level (Midland, TX), fix dispersion D_i
 - More buildings drive output gain, & **Developer profits fall** suggesting τ reflects rent-seeking
 - Results robust to three available divisions of MV and LV, doubling or removing congestion
- ► 40% remote work: Output gains scale down linearly with remote work
- Only use young buildings < 10 years old: similar gains, avoids outdated regulations</p>

% Δ from 2018 steady state	Baseline	Remote Work	New Buildings
Output	3.0%	1.5%	1.4%
Employment	-0.8%	-0.8%	-0.3%
Building Stock	17%	19%	8.4%
Developer Profits	-2.8%	-1.1%	-1.5%
Output, holding building allocation fixed	0.2%	-0.4%	0.1%
Consumption Equivalent Gain	1.6%	0.8%	0.8%

Baseline deregulation: Change in labor relative to 2018 steady state

- People leave already-deregulated Texas and South
- ► Largest population gain in major metro (LA) < 2.5%

Project model distortions onto **actual** floor area ratios (FAR): $\log \tau_z = \rho \log(FAR_z) + \epsilon_z$

- Project model distortions onto **actual** floor area ratios (FAR): $\log \tau_z = \rho \log(FAR_z) + \epsilon_z$
- Then compute distortions if FAR set to loosest value

- Project model distortions onto **actual** floor area ratios (FAR): $\log \tau_z = \rho \log(FAR_z) + \epsilon_z$
- Then compute distortions if FAR set to loosest value

Least regulated

Babalievsky, Herkenhoff, Ohanian, Prescott

- Project model distortions onto **actual** floor area ratios (FAR): $\log \tau_z = \rho \log(FAR_z) + \epsilon_z$
- Then compute distortions if FAR set to loosest value

heteluner tec

Most regulated

Local Deregulation: Relax Floor Area Ratio (FAR) in NYC

- Project model distortions onto **actual** floor area ratios (FAR): $\log \tau_z = \rho \log(FAR_z) + \epsilon_z$
- Then compute distortions if FAR set to loosest value

heteluner tee

Most regulated

Contributions:

- Develop spatial model of commercial land use regulations
- Identify distortions for each commercial property
- Validate against hand-collected zoning code features
- Moving all cities to least stringent regulations in U.S. yields large welfare/output gains

In progress:

Quantifying impact of regulations on low income households and homelessness

Thank you!

Parcel *i* Developer's Problem

- Parcel i defined by
 - x_i : Land square-footage
 - *p_i*: Price per building square-foot (e.g. distance to interstate)
 - *q_i*: Improvement cost (e.g. bedrock vs. mud)
 - τ_i : Regulatory distortion (virtual wedge \rightarrow does not result in payment/transfer of resources)
- Rent building, buildings depreciate fully at rate δ_b ("one-hoss-shay")
- If building depreciates, rebuild by investing in improvements $m_{i,t}$ subject to zoning τ_i :

$$\max_{m_{i,t}} \tau_i p_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_{i,t}} - \underbrace{q_i m_{i,t}}_{MV_{i,t}}$$

e.g. FAR: $\tau_i = \begin{cases} 1 & \text{if } BSF_i/x_i \leq \overline{H} \\ 0 & \text{otherwise} \end{cases} \rightarrow \tau_i \text{ parcel-level constant to capture multi-faceted zoning}$

► τ_i distorts m_i^* , but no τ_i in profits: $1 \cdot \beta p_i m_i^{*\gamma} x_i^{1-\gamma} - q_i m_i^*$ [\approx Lagrange multiplier]

CoreLogic Dataset

Overview

Address-level (Parcel-level) commercial tax assessor data, 2009-2018

CoreLogic Dataset

- Overview
 - Address-level (Parcel-level) commercial tax assessor data, 2009-2018
- Parcel i data includes:
 - > 3 divisions of total value into *improvements* (cost of materials/labor) & land

Total Value of Property (TV_i) = Improvement Value (MV_i) + Land Value (LV_i)

- Land square footage x_i
- Alphanumeric zoning codes ("C8", "M5") that reflect local regulations
- Building square footage BSF_i for subset of properties & age a_i

CoreLogic Dataset

- Overview
 - Address-level (Parcel-level) commercial tax assessor data, 2009-2018
- Parcel i data includes:
 - ▶ 3 divisions of total value into *improvements* (cost of materials/labor) & land

Total Value of Property (TV_i) = Improvement Value (MV_i) + Land Value (LV_i)

- Land square footage x_i
- Alphanumeric zoning codes ("C8", "M5") that reflect local regulations
- Building square footage BSF_i for subset of properties & age a_i

Challenge

- Map local regulations into quantitative measure of distortions
- Our approach: write down builder's problem for parcel i to structurally identify distortions
- Model regulatory distortions as a wedge in the builder's problem

Sample Selection

Robustness

- We crucially rely on Corelogic's split of property value into land and improvements:

TotalValue(TV) = LandValue(LV) + ImprovementValue(IV)

- Our dataset includes 3 methods: assessed, market, CoreLogic calculated
- Each valuation relies on different methods
 - Replacement cost method often used to value structures
 - Land values based on vacant lots of redevelopments
- Our baseline output gain under each of these three methods are remarkably similar

Valuation method:	Assessed	Market	CoreLogic Calculated (<i>Benchmark</i>)
Output gain from Midland, TX zoning	+2.9%	+3.2%	+3.0%

Developer's problem.

Developer owns commercial property *i* in region (city) *j* defined by

- x_i : Land square-footage
- z_i: Efficiency of building square-feet
- *p_j*: City *j* building price
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion (modeled as a wedge)

Developer's problem.

Developer owns commercial property *i* in region (city) *j* defined by

- x_i : Land square-footage
- z_i: Efficiency of building square-feet
- *p_j*: City *j* building price
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion (modeled as a wedge)

No regulation: use land & improvements m_i to create building square footage (BSF_i)

$$\max_{m_i} \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

• "One-hoss shay" depreciation rate δ_b , developer then uses m_i to build new structure

Developer's problem.

Developer owns commercial property *i* in region (city) *j* defined by

- x_i : Land square-footage
- z_i: Efficiency of building square-feet
- *p_j*: City *j* building price
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion (modeled as a wedge)

Regulation: $\tau_i = 1$ is unregulated, $\tau_i = 0$ is construction ban

$$\max_{m_i} \frac{\tau_i \beta p_j z_i}{BSF_i} \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

Developer's problem.

Developer owns commercial property *i* in region (city) *j* defined by

- x_i : Land square-footage
- z_i: Efficiency of building square-feet
- *p_j*: City *j* building price
- q_i : Cost of construction ("improvements") m_i
- τ_i : Regulatory distortion (modeled as a wedge)
- Regulation: $\tau_i = 1$ is unregulated, $\tau_i = 0$ is construction ban

$$\max_{m_i} \frac{\tau_i \beta p_j z_i}{\sum_{BSF_i} \frac{m_i^{\gamma} x_i^{1-\gamma}}{BSF_i}} - q_i m_i$$

- τ_i is wedge between unconstrained marginal product of improvements m_i & marginal cost
- FOC implies $\tau_i = \frac{q_i m_i}{\gamma \beta \rho_j z_i BSF_i}$

Interpretation of regulatory distortion τ_i

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

• What τ_i is.

Anything that restricts building size, conditional on factor prices p_i , q_i

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.

Interpretation of regulatory distortion τ_i

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i$$

• What τ_i is.

Anything that restricts building size, conditional on factor prices p_i , q_i

- Floor area ratios, setbacks, height limits, environmental review boards
- Non-zoning restrictions: local ordinances, deed restrictions, etc.

• What τ_i is **not**.

Not anything that enters building prices p_j (e.g. local building demand) Not anything that enters construction cost q_i

- Restrictions on building techniques (Schmitz (2020): prefab)
- Difficulty of building

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i \rightarrow \text{FOC: } \tau_i = \frac{q_i m_i}{\gamma \beta p_j z_i BSF_i}$$

- Numerator of τ_i is improvement value (cost of structures), $MV_i = q_i m_i$, observed in CL
- Challenge is building square feet (BSF_i) not observed for all parcels, z_i unobserved

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i \rightarrow \text{FOC: } \tau_i = \frac{q_i m_i}{\gamma \beta p_j z_i BSF_i}$$

- Numerator of τ_i is improvement value (cost of structures), $MV_i = q_i m_i$, observed in CL
- Challenge is building square feet (BSF_i) not observed for all parcels, z_i unobserved
- Proceed by defining denominator of τ_i as building value, $BV_i = p_j z_i BSF_i$

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i \rightarrow \text{FOC:} \tau_i = \frac{q_i m_i}{\gamma \beta BV_i}$$

- Numerator of τ_i is improvement value (cost of structures), $MV_i = q_i m_i$, observed in CL
- Challenge is building square feet (BSF_i) not observed for all parcels, z_i unobserved
- Proceed by defining denominator of τ_i as building value, $BV_i = p_i z_i BSF_i$
- Model then relates BV_i to observed total (TV_i) & improvement value (MV_i)
- This insight allows us to identify τ_i for all buildings in U.S.

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i \rightarrow \text{FOC:} \tau_i = \frac{q_i m_i}{\gamma \beta BV_i}$$

- After building depreciates, developer builds new structure implying SS total value:

$$TV_i = rac{1-eta(1-\delta_b)}{1-eta}BV_i - \delta_brac{MV_i}{1-eta}$$

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i \rightarrow \text{FOC:} \tau_i = \frac{q_i m_i}{\gamma \beta BV_i}$$

- After building depreciates, developer builds new structure implying SS total value:

$$TV_i = rac{1-eta(1-\delta_b)}{1-eta}BV_i - \delta_brac{MV_i}{1-eta}$$

- Solve for building value $BV_i = g(TV_i, MV_i)$ & substitute into denominator of τ_i

Developer's problem:
$$\max_{m_i} \tau_i \beta p_j z_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} - q_i m_i \rightarrow \text{FOC:} \tau_i = \frac{q_i m_i}{\gamma \beta BV_i}$$

- After building depreciates, developer builds new structure implying SS total value:

$$TV_i = rac{1-eta(1-\delta_b)}{1-eta}BV_i - \delta_brac{MV_i}{1-eta}$$

- Solve for building value $BV_i = g(TV_i, MV_i)$ & substitute into denominator of τ_i
- Closed-form regulatory distortion (τ_i) depends on *improvement share* $\frac{MV_i}{TV_i}$:

$$au_i = F\left(rac{MV_i}{TV_i}
ight), \ F'(\cdot) > 0$$

- Regulatory distortion (τ_i) is increasing in *improvement share* $\frac{MV_i}{TV_i}$:

$$au_i = rac{ig(rac{1-eta(1-\delta_b)}{1-eta}rac{MV_i}{TV_i}ig)}{\gammaetaig(1+rac{\delta_b}{1-eta}rac{MV_i}{TV_i}ig)}$$

- Low improvement share implies low τ_i , more distorted
- For example, a small building on valuable land \rightarrow strict regulation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_i component (T_i) & dispersion in τ_i component (D_i)

 $\max_{m_j} p_j \cdot T_j \cdot BSF_j(\frac{D_j}{D_j}, m_j) - m_j$

- Aggregate address-level (i) distortions to city-level (i) for policy reforms
- Aggregation has average τ_i component (T_i) & dispersion in τ_i component (D_i)

$$\max_{m_j} p_j \cdot T_j \cdot BSF_j(D_j, m_j) - m_j$$
$$T_j = \frac{\sum_{i \in j} MV_i}{\sum_{i \in j} MV_i / \tau_i}$$

- Reflects average city-wide distortion
- \blacktriangleright $T_i = \overline{\tau}$ if common $\tau_i = \overline{\tau}$

-

Focus of counterfactuals

Aggregation

- Aggregate address-level (i) distortions to city-level (j) for policy reforms
- Aggregation has average τ_i component (T_j) & dispersion in τ_i component (D_j)

 $\max_{m_j} p_j \cdot T_j \cdot BSF_j(D_j, m_j) - m_j$ $T_j = \frac{\sum_{i \in j} MV_i}{\sum_{i \in j} MV_i / \tau_i} \qquad D_j = \left(\frac{\sum_{i \in j} MV_i / \tau_i}{\sum_{i \in j} MV_i / \tau_i^{\frac{1}{1-\gamma}}}\right) / \left(\frac{\sum_{i \in j} MV_i}{\sum_{i \in j} MV_i / \tau_i^{\frac{1}{1-\gamma}}}\right)^{\gamma}$

- Reflects average city-wide distortion
- $T_j = \overline{\tau} \text{ if common } \tau_i = \overline{\tau}$
- Focus of counterfactuals

- Reflects τ_i dispersion within city
- Part regulation, part noise
- ► Hold <u>fixed</u> today [paper alters D_j]

- **Challenge:** improvement exponent γ always multiplies distortion
 - At parcel-level, recover *product* of $\tau_i \cdot \gamma$
 - At city-level, recover *product* of $T_i \cdot \gamma$

- Challenge: improvement exponent γ always multiplies distortion
 - At parcel-level, recover *product* of $\tau_i \cdot \gamma$
 - At city-level, recover *product* of $T_j \cdot \gamma$
- Solution: Treat city with the highest $T_j \cdot \gamma$ as a "deregulated benchmark" where $T_j=1$
 - Recover *lower bound* for γ (i.e. $T_j < 1$ implies a higher γ)

- Challenge: improvement exponent γ always multiplies distortion
 - At parcel-level, recover *product* of $\tau_i \cdot \gamma$
 - At city-level, recover *product* of $T_j \cdot \gamma$

Solution: Treat city with the highest $T_j \cdot \gamma$ as a "deregulated benchmark" where $T_j=1$

- Recover *lower bound* for γ (i.e. $T_j < 1$ implies a higher γ)
- We set $T_j = 1$ for Midland, TX (*aka the 'tall city'*), implies $\gamma = 0.92$
- High γ , Cobb-Douglas both in line with building production literature

- Challenge: improvement exponent γ always multiplies distortion
 - At parcel-level, recover *product* of $\tau_i \cdot \gamma$
 - At city-level, recover *product* of $T_j \cdot \gamma$

Solution: Treat city with the highest $T_j \cdot \gamma$ as a "deregulated benchmark" where $T_j=1$

- Recover *lower bound* for γ (i.e. $T_j < 1$ implies a higher γ)
- We set $T_j = 1$ for Midland, TX (*aka the 'tall city'*), implies $\gamma = 0.92$
- High γ , Cobb-Douglas both in line with building production literature

• Given
$$\gamma$$
 recover $\tau_i = \frac{MV_i}{\gamma\beta BV_i}$ at parcel level

- Challenge: improvement exponent γ always multiplies distortion
 - At parcel-level, recover *product* of $\tau_i \cdot \gamma$
 - At city-level, recover *product* of $T_j \cdot \gamma$

Solution: Treat city with the highest $T_j \cdot \gamma$ as a "deregulated benchmark" where $T_j=1$

- Recover *lower bound* for γ (i.e. $T_j < 1$ implies a higher γ)
- We set $T_j = 1$ for Midland, TX (*aka the 'tall city'*), implies $\gamma = 0.92$
- High γ , Cobb-Douglas both in line with building production literature

• Given
$$\gamma$$
 recover $\tau_i = \frac{MV_i}{\gamma\beta BV_i}$ at parcel level \rightarrow next, many litmus tests of $\tau_i \& T_j$

► Keep Parcels Where:

- \blacktriangleright *MV_i*, *TV_i*, and *x_i* all recorded
- $MV_i / TV_i \in (0.01, 0.99)$
- Outcome of Filtering:
 - End up with parcels worth 72% of aggregate TV_i

- Distortion: Anything that causes a landlord to build less than they want to, conditional on factor prices
 - Floor Area Ratios
 - Setbacks
 - Height limits
 - Environmental review boards
 - Threat of lawsuits
- Regulatory "tax": Any cost that doesn't act as a building improvement
 - Payments for local improvements (sewers, schools)
 - Litigation

- Prices: Anything that enters z_i or $r_{b,j,t}$
 - Restrictions on what you can build (factories vs office towers)
 - Property taxes
- **Costs:** Anything that enters q_i
 - Restrictions on building techniques (Schmitz (2020): prefab)
 - Difficulty of building (bedrock)

Household Problem

- ▶ Chooses labor $L_{j,t}$ and capital $K_{j,t}$ across cities $j \in J$, capital investment $i_{k,t}$
- Earns wages $w_{j,t}$, rents $r_{k,t}$, and profits from final-good firms $\pi_{j,f,t}$ and landlords $\pi_{j,b,t}$
- Maximizes utility:

$$\max_{c_t, i_{k,j,t}, L_{j,t}} \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\sigma}}{1-\sigma} - \frac{1}{1+\frac{1}{\eta}} \sum_j \left(\frac{L_{j,t}}{a_j(L_{j,t}, X_{j,t})} \right)^{1+\frac{1}{\eta}} \right)$$

subject to:

$$c_t + i_{k,t} = \sum_j \left(\pi_{j,b,t} + \pi_{j,f,t} + w_{j,t} L_{j,t} + r_{k,t} K_{j,t} \right)$$
$$K_{t+1} = i_{k,t} + (1 - \delta_k) K_t$$
$$K_t = \sum_j K_{j,t}$$

- Combine labor L_j , buildings B_j , capital K_j at city level to produce final good
- > Pay a national rental rate for capital r_k and city-specific wages w_j and building rents $r_{b,j}$

$$\pi_{j,f} = \max_{K_{j,t}, L_{j,t}, B_{j,t}} \underbrace{A_j L_{j,t}^{\alpha} B_{j,t}^{\chi_j} K_{j,t}^{1-\alpha-\chi_j}}_{Y_{j,t}} - w_{j,t} L_{j,t} - r_{k,j,t} K_{j,t} - r_{b,j,t} B_{j,t}$$

Building share $\chi_j = 0$ in remote work "region" and constant elsewhere

Identifying Improvement Share γ and Zoning Distortions

- CoreLogic: total value TV_i , improvement value MV_i , building age $\Rightarrow \delta_b$, and $\beta = \frac{1}{1+r}$
 - Can recover improvement share γ multiplied by zoning distortion T_j
 - ▶ ... but cannot separate returns to scale γ and distortion T_i without more assumptions
 - Intuition: low T_j lowers improvements, pushes MV / TV away from optimum implied by improvement share
- Our approach:
 - Treat city with the highest $T_j \gamma$ (Midland TX) as a "deregulated benchmark" Details
 - Assume undistorted developer's problem in that city, thus T_i=1
 - Recover conservative lower bound for γ (i.e. $T_j < 1$ implies a higher γ)

Identifying Parcel Distortions:

• Can use T_j , γ , and parcel-level MV, TV to get τ_i

Identification of γ : Part 1

Steady state: landlord will expend same MV each time building falls

$$V_f(\tau, z, q, x) = \beta V(B, \tau, z, q, x) - \underbrace{qm}_{MV}$$

TV is therefore NPV of payments minus NPV of costs

$$TV = \frac{r_{b,j}B}{1-\beta} - \frac{\delta_b qm}{1-\beta}$$

BV is NPV of payments to building before it depreciates:

$$BV = \frac{r_{b,j}B}{1 - \beta(1 - \delta_b)}$$

► MV:

$$MV = \beta \gamma \tau BV$$

Identification of γ : Part 2

Combine to get:

$$TV = \frac{r_{b,j}B}{1-\beta} - \frac{\delta_b MV}{1-\beta}$$
$$BV = \frac{r_{b,j}B}{1-\beta(1-\delta_b)}$$
$$TV = \left(\frac{1-\beta(1-\delta_b) - \delta_b\beta\gamma\tau}{1-\beta}\right)\frac{MV}{\tau\beta\gamma}$$
$$\gamma\tau = \frac{\left(\frac{1-\beta(1-\delta_b)}{1-\beta}\right)\frac{MV}{TV}}{\left(\beta + \frac{\delta_b\beta}{1-\beta}\frac{MV}{TV}\right)}$$

Τ
Identification of γ : Part 3

• Use $C_i \propto MV_i / \tau_i^{\frac{1}{1-\gamma}}$ and get:

Т

$$T_{j} = \frac{\sum_{i \in j} MV_{i}}{\sum_{i \in j} MV_{i} / \tau_{i}}$$
$$\frac{\sum_{i \in j} MV_{i}}{\sum_{i \in j} MV_{i}\gamma(\beta + \frac{\delta_{b}\beta}{1-\beta}\frac{MV_{i}}{TV_{i}}) / \left(\left(\frac{1-\beta(1-\delta_{b})}{1-\beta}\right)\frac{MV_{i}}{TV_{i}}\right)}$$
$$= \frac{\left(\frac{1-\beta(1-\delta_{b})}{1-\beta}\right)\sum_{i \in j} MV_{i}}{\beta\gamma\left(\sum_{i \in j} TV_{i} + \frac{\delta_{b}}{1-\beta}\sum_{i \in j} MV_{i}\right)}$$

$$T_{j} = T_{j} \frac{\sum_{i \in j} TV}{\sum_{i \in j} TV} = \frac{\left(\frac{1 - \beta(1 - \delta_{b})}{1 - \beta}\right) \sum_{i \in j} MV}{\beta \gamma \left(\sum_{i \in j} TV + \frac{\delta_{b}}{1 - \beta} \sum_{i \in j} MV\right)} \frac{\sum_{i \in j} TV}{\sum_{i \in j} TV} = \frac{\left(\frac{1 - \beta(1 - \delta_{b})}{1 - \beta}\right) \frac{\sum_{i \in j} MV}{\sum_{i \in j} TV}}{\beta \gamma \left(1 + \frac{\delta_{b}}{1 - \beta} \sum_{i \in j} \frac{TV}{TV}\right)}$$

Parameter	Description	Value	Source
β	Discounting	0.96	Standard
σ	CRRA	2	Standard
η	Labor Curvature	2	Keane and Rogerson (2012)
δ_k	Depreciation	0.032	McGrattan (2020)
α	Labor Share	0.594	Penn World Table (US, 2018)

Variable	Description	Source
Y	Aggregate GDP	NIPA Table 1.1.6
Y_j	MSA GDP	BEA
$\sum_{j} i_{k,j}$	Equipment+IP Investment	NIPA Table 1.1.6
Lj	MSA Labor Supply	ACS
$L_r / \sum_j L_j$	Remote Labor Supply Share	ACS
$w_r L_r / \sum_j w_j L_j$	Remote Wage Bill Share	ACS

GE Model: Identification

Remote Work:

- Allocate labor L_r based on ACS labor share $\rho_L = L_r / \sum_i L_j$
- Allocate GDP Y_r based on ACS wage share $\rho_W = w_r L_r / \sum_j w_j L_j$
- Scale L_j and Y_j in other regions by $(1 \rho_L), (1 \rho_W)$

Factor Shares:

Back out χ in non-remote regions by subtracting inferred payments to other factors:

$$\chi_n = \frac{(1-\alpha)\sum_j Y_j - r_k \sum_j i_{k,j} / \delta_k}{\sum_{j \neq r} Y_j} \sim 0.15$$

GE Model: Identification

Supply:

Building supply in each period can be expressed as a supply shifter Ψ_j :

$$\Psi_{j} = T^{\frac{\gamma}{1-\gamma}} D^{\frac{1}{1-\gamma}} \delta_{b} C_{j}(\beta\gamma)^{\frac{\gamma}{1-\gamma}}$$

Use GE model, not CoreLogic, to back out level of supply shifter Ψ_j (property taxes, Prop 13 mean CoreLogic building values will be lower than true factor payments)

$$\underbrace{p_{j}^{\frac{1}{1-\gamma}}\Psi_{j}}_{p_{j}B_{j}^{N}}=\frac{\chi_{j}Y_{j}}{1-\beta(1-\delta_{b})}$$

Demand:

Demand for improvements is as follows:

$$q_j m_j = T_j \gamma \beta p_j B_j^N$$

> δ_b : Depreciation identified from average age of buildings \bar{a} :

$$\delta_b = rac{1}{ar{a}}$$

p_j: Normalized to average price per building square foot identified from buildings with BSF:

$$p_j = rac{\sum_{i \in j} BV_i}{\sum_{i \in j} BSF_i}$$

First Test: NYC Floor Area Ratios (FAR)

Aggregate τ_i into zoning codes z (e.g. $z \in \{C1, C2, \ldots\}$ in NYC):

$$\tau_z = \frac{\sum_{i \in z} MV_i}{\sum_{i \in z} MV_i / \tau_i}$$

- Test theory by comparing floor area ratios (log FAR_z) vs. our model distortion log τ_z
- Expectation: higher (less-regulating) FAR should have higher (less-regulating) au
- Result: positive correlation between statutory and model-based regulation Regression

FAR Regression

	(1)			
Variables	$\log \tau_z$			
$\log FAR_z$	0.0341***			
-	(1.19e-07)			
	× ,			
R^2	0.365			
N	104			
Standard errors in parentheses				
*** p<0.01, ** p<0.05, * p<0.1				
Weighted by Building Value				

Back to Validation

NYC: Log Model Distortion τ_z vs Log Statutory FAR

DC: Log Model Distortion τ_z vs Log Statutory Height Limits

- Second Test: Maps and Time Series
 - Does T_i align with our priors about which cities are more regulated?
 - Expectation: cities in California should be highly regulated; cities in Texas should be less so
 - e.g. Houston, TX has no "zoning"

...but still has other deed restrictions, historic districts, ordinances that limit building development

Result: Houston and Dallas less regulated than SF and LA

Time Series of Aggregate Distortion T_i in Major MSAs

- Third Test: Business Districts
 - Plot τ_z in two well-known regions: San Francisco, Manhattan
 - Litmus test/prior expectation: Center business districts should be less regulated
 - Result: Parcels in business districts generally have higher τ_z

San Francisco Distortions

Model distortion

- 100 10%
- Bottom 10%

SF Height Limit Zoning Map, 2021

Manhattan Distortions

 τ_z

- Top 10%
- Bottom 10%

Equilibrium

An equilibrium in this economy is:

- Prices $\{\{r_{b,j,t}, w_{j,t}\}_{j\in J}, r_{k,t}\}_{t=0}^{\infty}$
- ► Quantities $\{\{Y_{j,t}, K_{j,t}, L_{j,t}, B_{j,t}, i_{k,j,t} \{m_{i,t}, B_{i,t}^N\}_{i \in j_{\delta,t}}\}_{j \in J}, c_t\}_{t=0}^{\infty}$
- Decision rules
- Such that:
 - Given prices, the stand-in household maximizes utility
 - Given prices, firms maximize profits
 - Markets clear and the laws of motion and resource constraint hold:

$$B_{j,t+1} = (1 - \delta_b) B_{j,t} + \sum_{i \in j_{\delta,t}} B_{i,t}^N$$

$$c_t - \sum_j \left(i_{k,j,t} + \sum_{i \in j_{\delta,t}} q_i m_{j,t} \right) = \sum_j Y_j$$

Where:

$$\max_{m_j} \beta T_j p_j \underbrace{\frac{D_j (\delta_b C_j)^{1-\gamma} m_j^{\gamma}}{B_j^N}}_{B_j^N} - \underbrace{m_j}_{MV_j}$$

► Where:

(Parcel Efficiency)
$$C_i = z_i^{\frac{1}{1-\gamma}} x_i q_i^{\frac{\gamma}{1-\gamma}} \propto M V_i / \tau_i^{\frac{1}{1-\gamma}}$$

$$\max_{m_j} \beta T_j p_j \underbrace{\frac{D_j (\delta_b C_j)^{1-\gamma} m_j^{\gamma}}{B_j^N}}_{B_j^N} - \underbrace{m_j}_{MV_j}$$

► Where:

(Parcel Efficiency)
$$C_i = z_i^{\frac{1}{1-\gamma}} x_i q_i^{\frac{\gamma}{1-\gamma}} \propto M V_i / \tau_i^{\frac{1}{1-\gamma}}$$

(Aggregate Efficiency) $C_j = \sum_{i \in j} C_i$

$$\max_{m_j} \beta T_j p_j \underbrace{\frac{D_j (\delta_b C_j)^{1-\gamma} m_j^{\gamma}}{B_j^N}}_{B_j^N} - \underbrace{m_j}_{MV_j}$$

Where:

(Parcel Efficiency)
$$C_i = z_i^{\frac{1}{1-\gamma}} x_i q_i^{\frac{\gamma}{1-\gamma}} \propto MV_i / \tau_i^{\frac{1}{1-\gamma}}$$

(Aggregate Efficiency) $C_j = \sum_{i \in j} C_i$
(Dispersion) $D_j = \left(\frac{\sum_{i \in j} \tau_i^{\frac{\gamma}{1-\gamma}} C_i}{\sum_{i \in j} C_i}\right) / \left(\frac{\sum_{i \in j} \tau_i^{\frac{1}{1-\gamma}} C_i}{\sum_{i \in j} C_i}\right)^{\gamma}$

$$\max_{m_j} \beta T_j p_j \underbrace{\frac{D_j (\delta_b C_j)^{1-\gamma} m_j^{\gamma}}{B_j^N}}_{B_j^N} - \underbrace{m_j}_{MV_j}$$

► Where:

(Parcel Efficiency)
$$C_i = z_i^{\frac{1}{1-\gamma}} x_i q_i^{\frac{\gamma}{1-\gamma}} \propto MV_i / \tau_i^{\frac{1}{1-\gamma}}$$

(Aggregate Efficiency) $C_j = \sum_{i \in j} C_i$
(Dispersion) $D_j = \left(\frac{\sum_{i \in j} \tau_i^{\frac{\gamma}{1-\gamma}} C_i}{\sum_{i \in j} C_i}\right) / \left(\frac{\sum_{i \in j} \tau_i^{\frac{1}{1-\gamma}} C_i}{\sum_{i \in j} C_i}\right)^{\gamma}$
(Aggregate Distortion) $T_j = \sum_{i \in j} \tau_i^{\frac{1}{1-\gamma}} C_i / \sum_{i \in j} \tau_i^{\frac{\gamma}{1-\gamma}} C_i$

Identifying Improvement Share γ and Distortions τ_i

- Deregulated benchmark: Midland, TX (oil producing MSA)
- Implied improvement share $\gamma \sim 0.92$, i.e. near linear
- Arguments for near-linear production function:
 - Glaeser, Gyourko, and Saks (2005): average cost per BSF very flat for different building sizes
 - Intuition: can always add more floors
- With γ identified, can recover τ_i at parcel level:

$$au_i = rac{ig(rac{1-eta(1-\delta_b)}{1-eta}ig)rac{MV_i}{TV_i}}{\gammaig(eta+rac{\delta_beta}{1-eta}rac{MV_i}{TV_i}ig)}$$

Internal IV

- Re-solve model setting TFP and amenities equal in all regions
- Use counterfactual congestion $\widehat{L/X}$ as IV for real congestion
- Recover impact of congestion on amenities
- Results:

$$\log a_{j} = \underbrace{\mu}_{\substack{-0.53^{***} \\ [0.07]}} \log(L_{j}/X_{j}) + e_{j}$$
(1)

Baseline: Change in Labor L_j Relative to Initial SS

Losers are already-deregulated Texas and South; Winners are highly regulated coast

Exogenous Amenities

As congestion worsens in some cities, it improves in others

Commercial Developers

- Owns plot of land *i* with square footage x_i , zoning distortion τ_i
 - ▶ $\tau_i = 1$ means no regulation, $\tau_i = 0$ means construction ban
- Construction:
 - Buy improvements (concrete, glass, labor) m_i at price q_i
 - Combine w/ land to make building square footage BSF
 - Sell at price per square foot p_i

Developer's problem:
$$\max_{m_i} \tau_i p_i \underbrace{m_i^{\gamma} x_i^{1-\gamma}}_{BSF_i} -$$

Developers' profits: $\pi = 1 p_i m_i^{\gamma} x_i^{1-\gamma} - q_i r_i^{\gamma}$

 \succ τ_i only distorts FOC (e.g. height limit \bar{B} alters investment, but creates no revenue)

 $q_i m_i$ MV_i