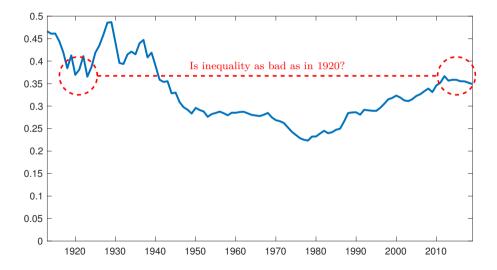
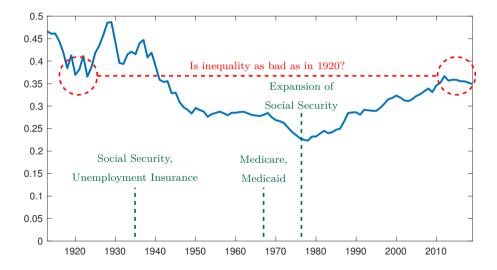

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Social Security and Trends in Wealth Inequality

Sylvain Catherine Max Miller Natasha Sarin Wharton Harvard Yale


INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
● 00	00000	0000	0000	00000	0

Motivation – Top 1% wealth share


INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
● 00	00000	0000	0000	00000	0

Motivation – Top 1% wealth share

INTRODUCTION	Methodology	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
● 00	00000	0000	0000	00000	0

Motivation – Top 1% wealth share

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

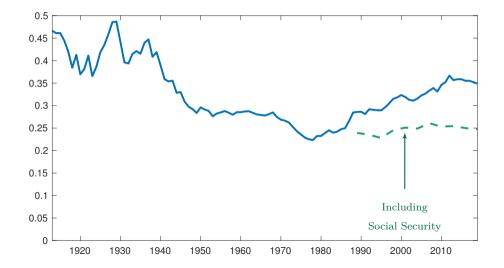
This Paper

- Compute aggregate Social Security wealth
 - Present value of future benefits, net of future taxes
 - Based on Survey of Consumer Finances (SCF) for retirees
 - Using Monte Carlo simulations for working households

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

This Paper

- Compute aggregate Social Security wealth
 - Present value of future benefits, net of future taxes
 - Based on Survey of Consumer Finances (SCF) for retirees
 - Using Monte Carlo simulations for working households
- Distribute Social Security wealth between bottom 90% and top 10% or top 1%


INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

This Paper

- Compute aggregate Social Security wealth
 - Present value of future benefits, net of future taxes
 - Based on Survey of Consumer Finances (SCF) for retirees
 - Using Monte Carlo simulations for working households
- \bullet Distribute Social Security wealth between bottom 90% and top 10% or top 1%
- Recompute the evolution of top wealth shares between 1989-2019

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Key finding – Top 1% wealth share

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Methodology

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

How does Social Security work?

• Taxes

- 12.4% payroll tax: 10.6% to old-age program \$(1.8%\$ to disability insurance)\$
- Up to cap (2019 \$132,900)

High earners contribute a smaller share of their earnings

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	0000	0000	0000	00000	0

How does Social Security work?

• Taxes

- 12.4% payroll tax: 10.6% to old-age program (1.8% to disability insurance)
- Up to cap (2019 \$132,900)

• Benefits

- 1. Adjust past taxable earnings for inflation and real wage growth
- 2. Take average of the best 35 years (AIYE)
- 3. Apply benefit formula:
 - 90% of AIYE below first bend point (2019: \$11,112)
 - 32% between first and second (2019: \$66,996)
 - 15% above the second

High earners contribute a smaller share of their earnings

High earners get a lower replacement rate on their contributions

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Defining Social Security wealth

• Accrued Social Security wealth S_{it}

$$\mathbf{S}_{it} = \frac{\sum_{s=t-a}^{t} \mathbf{T}_{is}}{\sum_{s=t-a}^{T} \mathbb{E}[\mathbf{T}_{is}]} \sum_{s=t+1}^{T} \frac{\mathbb{E}[\mathbf{B}_{is}]}{(1+r_{ts})^{s-t}}$$

- Present value of expected benefits
- Share of expected lifetime payrol taxes already paid
- r_{ts} : market yield curve in year t

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Defining Social Security wealth

• Accrued Social Security wealth S_{it}

$$\mathbf{S}_{it} = \frac{\sum_{s=t-a}^{t} \mathbf{T}_{is}}{\sum_{s=t-a}^{T} \mathbb{E}[\mathbf{T}_{is}]} \sum_{s=t+1}^{T} \frac{\mathbb{E}[\mathbf{B}_{is}]}{(1+r_{ts})^{s-t}}$$

- Present value of expected benefits
- Share of expected lifetime payrol taxes already paid
- r_{ts} : market yield curve in year t
- Alternative method: net present value of benefits minus futures taxes

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Defining Social Security wealth

• Accrued Social Security wealth S_{it}

$$\mathbf{S}_{it} = \frac{\sum_{s=t-a}^{t} \mathbf{T}_{is}}{\sum_{s=t-a}^{T} \mathbb{E}[\mathbf{T}_{is}]} \sum_{s=t+1}^{T} \frac{\mathbb{E}[\mathbf{B}_{is}]}{(1+r_{ts})^{s-t}}$$

- Present value of expected benefits
- Share of expected lifetime payrol taxes already paid
- r_{ts} : market yield curve in year t
- Alternative method: net present value of benefits minus futures taxes
- For retirees

Social Security Wealth_{it} =
$$\sum_{s=t}^{T} \left(\prod_{k=t}^{s-1} (1 - m_{itk}) \right) \frac{\text{Benefits}_{it}}{(1 + r_{t,s})^{s-t}} \frac{\mathbb{E}[\text{CPI}_s]}{\text{CPI}_t}$$

– Benefits are observed in the data

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Social Security wealth of workers

• For each SCF survey year, we simulate simulate earnings trajectories for millions of workers and apply taxes and benefit formulas

INTRODUCTION	Methodology	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Social Security wealth of workers

- For each SCF survey year, we simulate simulate earnings trajectories for millions of workers and apply taxes and benefit formulas
- Simulating past and future earnings trajectories:
 - Stochastic component: rich process estimated in Guvenen et al. (2021), which matches moments from the cross-section and dynamics of earnings
 - Life-cycle component: matches earnings per cohort×gender×year reported in Guvenen et al. (2018)
 - Goal: emulating Social Security administrative panel data

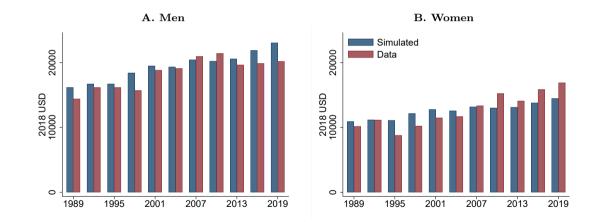
INTRODUCTION	Methodology	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Social Security wealth of workers

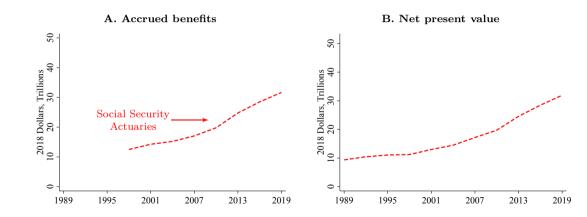
- For each SCF survey year, we simulate simulate earnings trajectories for millions of workers and apply taxes and benefit formulas
- Simulating past and future earnings trajectories:
 - Stochastic component: rich process estimated in Guvenen et al. (2021), which matches moments from the cross-section and dynamics of earnings
 - Life-cycle component: matches earnings per cohort×gender×year reported in Guvenen et al. (2018)
 - Goal: emulating Social Security administrative panel data
- For each simulated path, we discount future benefits and future taxes Two discount rates:
 - 1 Risk-free valuation: real government yield curve
 - $2\,$ Risk-adjusted valuation: additional premium for macroeconomic risk

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

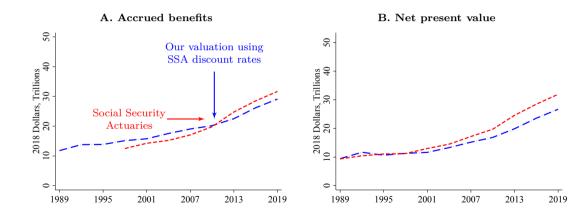
Baseline calibration & link to the data


- Social Security parameters
 - We assume that parameters of Social Security formula scale up with the wage index
 - e.g. Earnings cap, bend points
 - Consistent with the last 40 years
- Macroeconomic assumptions
 - Discount rates: average nominal market yield curves (Fed Board)
 - Inflation projections: historical SSA Annual Report
 - Real growth rate of wages: historical SSA Annual Report
- Merging simulated and real data:
 - Each worker in the SCF is matched with a simulated worker of the same age, gender, wage income and year.
 - We aggregate using SCF survey weight

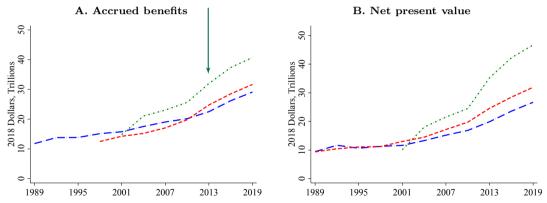
INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0


VALIDATION OF METHODOLOGY

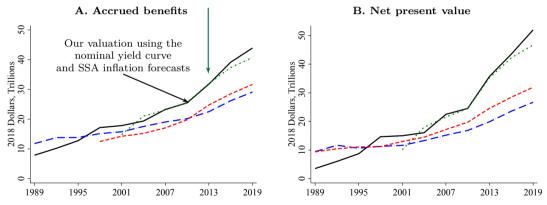
Introduction	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0


Validation – Simulated vs actual full-retirement-age benefits

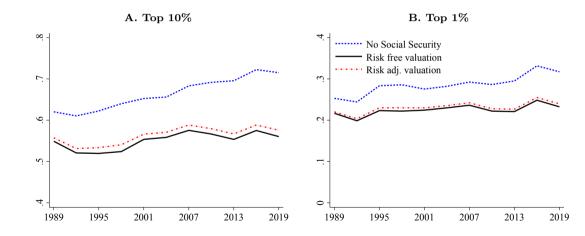
INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0



INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0


INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

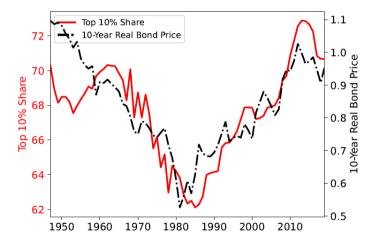
Our valuation using real yield curve (Treasury Inflation Protected Securities)


INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Our valuation using real yield curve (Treasury Inflation Protected Securities)

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	000●	0000	00000	0

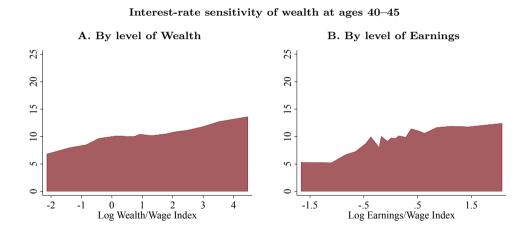
Results – Top wealth shares with Social Security



INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Role of interest rates

INTRODUCTION	Methodology	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0


Wealth inequality tracks real interest rates fluctuations...

Source: Greenwald, Leombroni, Lustig and Nieuwerburgh (2021)

INTRODUCTION ME	THODOLOGY \	ALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000 00	0000	0000	0000	00000	0

... because wealthier households invest more in long-term assets...

Source: Catherine, Miller, Paron and Sarin (2022)

INTRODUCTION	Methodology	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000	00000	0000	000●	00000	0

... unless you count Social Security as an asset

Interest-rate sensitivity of wealth at ages 40–45 A. By level of Wealth **B.** By level of Earnings 25 25 Wealth +Social Security wealth 20 20 15 15 10 10 \$ \$ 0 0 -1.5 -.5 1.5 -2 -1 5 3 4 Log Wealth/Wage Index Log Earnings/Wage Index

Source: Catherine, Miller, Paron and Sarin (2022)

000 00000 0000 0000 000 000 000 000 00	INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
	000	00000	0000	0000	●0000	0

Robustness

- Funding gap
- Life expectancy inequality
- Adjusting previous studies

INTRODUCTION MI	ETHODOLOGY	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000 00	0000	0000	0000	0000	0

Funding gap – Payable Benefits under SSA projections

1990

2010

2030

2050

2070

A. Projections as of 1989 _ Share of Scheduled Benefits .2 .4 .6 .8 Share of Scheduled Benefits .2 .4 .6 .8 Alternative Scenario I Alternative Scenario II ---Alternative Scenario III 0 C

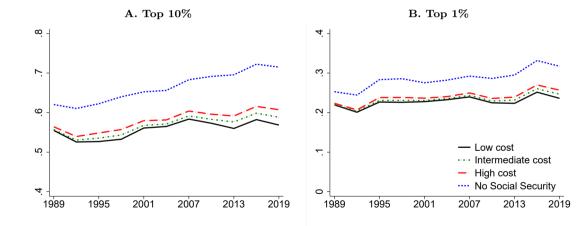
2090

2020

2040

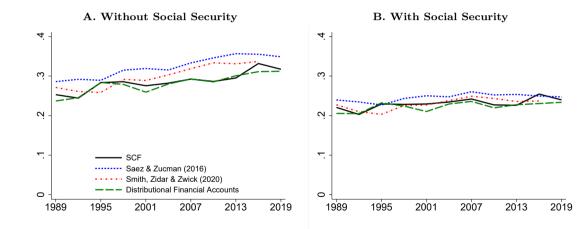
2060

2080


2100

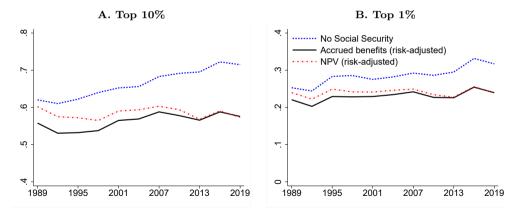
B. Projections as of 2019

2120


INTRODUCTION	Methodology	VALIDATION AND RESULTS	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0

Funding gap – Top shares (payable benefits only, risk-adjusted valuation)

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	0


Adjusting other studies – Top 1% wealth shares

INTRODUCTION METH	hodology Va	ALIDATION AND RESULTS 1	Role of interest rates	Robustness	Conclusion
000 000	000 000	000	0000	00000	0

Net present value concept

• We now defined Social Security wealth as the present value of expected benefits net of future contributions (including the employer's share).

INTRODUCTION	Methodology	Validation and Results	Role of interest rates	Robustness	Conclusion
000	00000	0000	0000	00000	•

Conclusion

- Saez and Zucman (2016) argue that Social Security should not be taken into account because it would call for the inclusion of other programs that reduce private savings and it would "not be clear where to stop"
- We argue that narrowly defined marketable wealth is not the right place to stop
 - Social Security is 49% of the wealth of the bottom 90%
 - Social programs can make marketable wealth inequality look worse
 - Current wealth inequality measures cannot be used for policy evaluation
- Top wealth shares have not increased since 1989 when Social Security wealth is taken into account