Discussion of "The research university, invention and industry: evidence from German history"

Dimitris Papanikolaou

Kellogg School of Management and NBER

I like the paper a lot. Important question!

I like the paper a lot. Important question! Answering this question using historical data has distinct advantages and disadvantages:

I like the paper a lot. Important question! Answering this question using historical data has distinct advantages and disadvantages:

· Advantage: structural changes, geographical distance as treatment

I like the paper a lot. Important question! Answering this question using historical data has distinct advantages and disadvantages:

- Advantage: structural changes, geographical distance as treatment
- Disadvantage: Limited data granularity

I like the paper a lot. Important question! Answering this question using historical data has distinct advantages and disadvantages:

- Advantage: structural changes, geographical distance as treatment
- Disadvantage: Limited data granularity

Can we attack the same question using modern data?

Patents seem like a natural candidate. But, not all patents are equally valuable inventions:

- proliferation of patents with no value (Jaffe & Lerner 2004)
- pro-patent shift in US policy (Hall and Zeidonis 2001)

Use breakthrough patents to measure innovation. Kelly, Papanikolaou, Seru, and Taddy (2021) identify important patents as those that:

- Novel and impactful: are distinct from previous patents but are related to subsequent patents based on textual similarity
- Breakthroughs: patents in the top 10 percent of the unconditional distribution of impact/novelty

Patent-patent similarity example: Moving Pictures

Breakthrough patents and growth

- Breakthrough patents predict industry output and labor productivity.
- Sample: Manufacturing, 1958–2018

Breakthrough patents and Firm Productivity

A. Value Added (profitability)

Identifying Knowledge Spillovers from Universities

Identifying Knowledge Spillovers from Universities

Possible channels:

1. Direct: Universities generate innovations that are then used by firms

- 1. Direct: Universities generate innovations that are then used by firms
 - University assignees account for $\approx 2\%$ of all patent filings.

- 1. Direct: Universities generate innovations that are then used by firms
 - University assignees account for $\approx 2\%$ of all patent filings.
- 2. Indirect: Universities generate knowledge (basic science) that has spillovers; firms benefit from these spillovers generating innovations that they then use (and profit from).

- 1. Direct: Universities generate innovations that are then used by firms
 - University assignees account for $\approx 2\%$ of all patent filings.
- 2. Indirect: Universities generate knowledge (basic science) that has spillovers; firms benefit from these spillovers generating innovations that they then use (and profit from).
 - Identify which patents build on science based on patent cites a scientific article (based on work by Matt Marx)

- 1. Direct: Universities generate innovations that are then used by firms
 - University assignees account for $\approx 2\%$ of all patent filings.
- 2. Indirect: Universities generate knowledge (basic science) that has spillovers; firms benefit from these spillovers generating innovations that they then use (and profit from).
 - Identify which patents build on science based on patent cites a scientific article (based on work by Matt Marx)

Using patents, we can trace knowledge spillovers from academia to the industry.

Distribution across time

Distribution across technology classes

• Approximately 40% of all breakthroughs cite a scientific paper (compared to 26% for all patents)

Product Category	Share of breakthroughs relying on science	
	pre-1990	post-1990
Industrial Manufacturing and Processing Machinery and Accessories	17%	13%
Medical Equipment and Accessories and Supplies	41%	32%
Information Technology Broadcasting and Telecommunications	18%	34%
Computer Equipment and Accessories	6%	8%
Data Voice or Multimedia Network Equipment or Platforms and Accessories	5%	10%
Software	4%	10%
Other	25%	21%

- Shift from Manufacturing and Medical Equipment to IT
- (Patent to product mapping based on Caunedo and Papanikolaou, 2023)

Distribution across firms

- Approximately 40% of all patents that build on science are assigned to a publicly traded firm.
- Share is even larger for breakthrough patents.

Can we measure the economic value of these patents?

• Kogan, Papanikolaou, Seru, and Stoffman (QJE, 2017) estimate the value of patents using firm's stock market reaction to patent issues as an estimate of the (private) value of patents.

Example: Stock market and patent issues

• Stock price (left axis) and trading volume (right axis) of GENEX Co on August 7, 1990, after award of patent no. 4,946,778 for "Single-Chain Polypeptide Binding Molecules"

	Patent Importance (Novelty/Impact)			Economic Value (KPSS)			
	(1)	(2)	(3)	(4)	(5)	(6)	
science_cite	0.057***	0.036***	0.025***	0.586***	0.376***	0.003**	
	(16.28)	(15.42)	(18.24)	(15.89)	(14.07)	(3.07)	
Observations	6,612,051	6,612,051	3,143,982	2,059,011	2,059,011	1,945,933	
Fixed Effects:							
Issue Year	Y	Y	Y	Y	Y	Y	
Tech Class \times Issue Year		Y	Y		Y	Y	
$Firm \times Issue \ Year$			Y			Y	

• Patents that build on science are both more important but also more economically valuable.

Distribution across time

- Paper is great in providing convincing evidence of spillovers from academia to firms, yet evidence is somewhat indirect.
- Patents allows us to identify direct linkages from universities to firms.
- Next step is to quantitatively assess the magnitude of these spillovers.