The Research University, Invention, and Industry Evidence from German History

Jeremiah Dittmar and Ralf R. Meisenzahl

LSE and Chicago FED

The views expressed here are the authors' and do not necessarily reflect the views of the Federal Reserve Bank of Chicago, Board of Governors or staff of the Federal Reserve System. Dittmar acknowledges support from the ERC.

# Can universities drive major changes in industrial activity?

#### Debate on role of universities

 Limited role in British Industrial Revolution, but may offer 'cure for technological backwardness' — Landes (1969)

# Can universities drive major changes in industrial activity?

#### Debate on role of universities

 Limited role in British Industrial Revolution, but may offer 'cure for technological backwardness' — Landes (1969)

#### German history as example and model

- Germany develops research university, industrializes in 1800s
- Challenge: pre-1840 econometric 'terra incognita' Tilly

# Can universities drive major changes in industrial activity?

### Debate on role of universities

 Limited role in British Industrial Revolution, but may offer 'cure for technological backwardness' — Landes (1969)

#### German history as example and model

- Germany develops research university, industrializes in 1800s
- Challenge: pre-1840 econometric 'terra incognita' Tilly

## Our contribution

- French Revolution delivers pro-science shock in Germany
- New evidence on invention and manufacturing 1760-1900 that (i) cover longer time and (ii) are spatially disaggregated
  - Universities not historical centers of technology or industry
  - Shift in early 1800s, especially in knowledge intensive industries
  - University predicts adoption of, internat'l prizes for, innovation

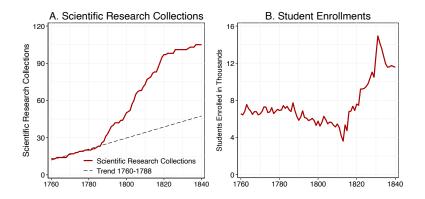
Long-Run Prosperity — the German Path

Social revolutions have spillovers across borders

- 'social revolutions have given rise to models and ideals of enormous international impact and appeal...'
  - Theda Skocpol, States and Social Revolution (1979)

The German path — a major and important example

 a high knowledge production path to capitalist modernity without democracy — no bourgeois revolution, instead a 'revolution of the mind' plus reactionary politics


(Blackbourn & Eley, R.R. Palmer, Engels...)

# Conceptual Innovations in University Education

"This early 19th century concept of *wissenschaftliche Bildung* (scientific education) had a profound impact on the history of the German university... Setting themselves the task to represent the 'unity of science'... they were reconceptualised as the pre-eminent loci of research and *Bildung* (education)."

- Van Bommel (2015)

## University Research Collections and Enrollments



The *scientific research collections* are the number of university collections in: physics, chemistry, minerals, technology, and the botanical and life sciences (these notably support training of mechanics, technologists *outside* university)

## Preview: Inventions and Scientific Discoveries

Compare Towns Above and Below Median Distance to University

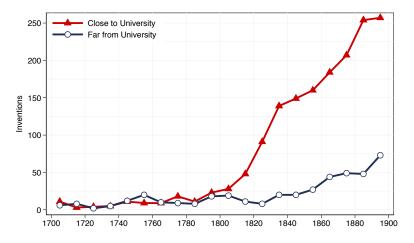



Figure: Major Inventions and Scientific Discoveries

History of tech: geocode observations in Handbuch zur Geschichte der Naturwissenschaften und der Technik

Preview: Manufacturing – Plant Openings 1800-1859

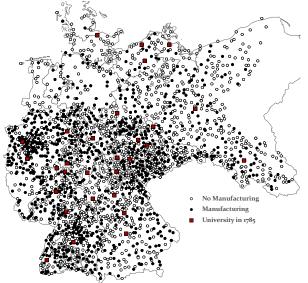



Figure: Manufacturing activity of towns in the Deutsches Städtebuch

# Preview: Proximity to Universities and New Manufacturing

|             | Any New Manufacturing<br>Mean Across Towns |            |            | Count New Manufacturing<br>Sum Across Towns |  |  |
|-------------|--------------------------------------------|------------|------------|---------------------------------------------|--|--|
|             | Close to                                   | Far from   | Close to   | Far from                                    |  |  |
| Time Period | University                                 | University | University | University                                  |  |  |
| 1760-1799   | 0.12                                       | 0.13       | 179        | 188                                         |  |  |
| 1800-1859   | 0.67                                       | 0.50       | 1445       | 970                                         |  |  |
| 1860-1899   | 0.63                                       | 0.61       | 1023       | 979                                         |  |  |

- Compares towns below and above median distance to a university as of the 1780s. Number of towns: 2,254 (1,127 close and 1,127 far)
- $\blacksquare \ \ \mbox{Median distance cut off} \approx 60 \ \ \mbox{kilometers}$
- Period 1: before shock. Period 2: after. Period 3: fall in price of transport

How did Germany become a leading industrial economy?

## Canonical story: railroad, heavy industry, banking, chemicals

 Mid-1800s growth spurt — railroads, metal industries (Gerschenkron 1962, Fremdling 1977, Pierenkemper & Tilly 2004)

## The canonical story is of course debated

- Continuous process prior development, railroad induced (Ogilvie 1999, Kaufhold 1981, Kopsidis & Bromley 2017)
- Other factors matter post-1850 education, institutions (Landes 1969, Acemoglu et al. 2011, Becker et al. 2014)
- Early 1800s shift industrialization with reactionary politics (Kuczynski 1961, Forberger 1958, Wehler 1987)

Our analysis - new, disaggregated evidence

#### Invention and science — patented and non-patented ideas

Data from history of tech before advent of patent systems

### Manufacturing and innovation

- Plant openings from encyclopaedia of German towns
- Technology adoption mechanization at factory level
- Prizes for innovations at first World's Fair in 1851

#### High level — where do we look for economics of innovation?

- Schmookler 1966, Moser 2004, MacLeod & Nuvolari 2016
- Compare to patterns of 'democratic invention' in the USA?

# Hypotheses

- 1. Location of industry. We expect to find industrial activity increasing around universities after circa 1800
- 2. Knowledge intensive industry. We expect the university effect will be concentrated in knowledge intensive sectors
- 3. **Technological change.** We expect technological change to concentrate near universities mechanization is cutting edge
- The quality of innovation. We expect high quality innovation to cluster near universities — as evidenced by competitive, international prizes for industrial innovation

# Hypothesis 1: The Location of Industrial Activity

The Deutsches Städtebuch records industrial history of towns

We code plant openings 1760-1900 across 2,254 towns

Our measure predicts number of workers and number of factories at the county-by-sector level in 1849 Prussian Census

| Town              | Year | Manufacturing Activity | Sector               |
|-------------------|------|------------------------|----------------------|
| Schwabach         | 1801 | Buchdruckerei          | Printing             |
| Mannheim          | 1801 | Machinenfabrik         | Industrial Machinery |
| Allersberg        | 1801 | Drahtfabrik            | Fabricated Metal     |
| Bad Neustadt      | 1801 | Getreidemühle          | Food Processing      |
| Hoehr-Grenzhausen | 1801 | Papiermühle            | Paper                |
| Euskirchen        | 1801 | Tuchweberei            | Textiles             |
|                   |      |                        |                      |
| Chemnitz          | 1843 | Lokomotivenbau         | Transport Equipment  |

## What is the Variation We Investigate?

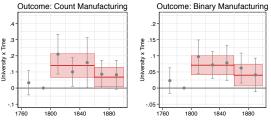
### Manufacturing in towns 'close' or 'far' to universities

- Finding: shift toward universities and increase in early 1800s
- Counterfactuals: all variation and within territory-x-year cells
  thus within 44 territories that constitute historic 'Germany'

#### Was the location of universities exogenous?

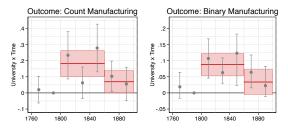
- Preindustrial foundations, in small towns, non-scientific aims and 'could not be shifted' – Segal (2018)
- But note new universities: Berlin 1810, Munich 1826

#### What about other factors shifting across time and space?


Railroads? Regional institutions? Customs union? Schools?

# Research Design

$$manufacturing_{it} = \sum_{s} \beta_{s}(university_{i} \times time_{s}) + \theta_{i} + \delta_{t} + \gamma X_{it} + \epsilon_{it}$$


- Outcome plant openings as count or indicator by town-time
- University exposure measured by below median distance, also linearly and flexibly in distance
- Cause and effect the exogeneity of location
  - Study university exposure for all towns, using university locations in 1800s, a few of which potentially endogenous
  - Restrict to cities those whose university exposure does not shift due to potentially endogenous university locations
- Inference spatial standard errors

## Baseline — University Proximity and Manufacturing



A. All Cities





- Panel A: All cities: n = 2,254. Panel B: No change in exposure: n = 1,686
- Graph shows: (i) flexible estimates and (ii) estimates assuming two post periods

## Interpretive Questions

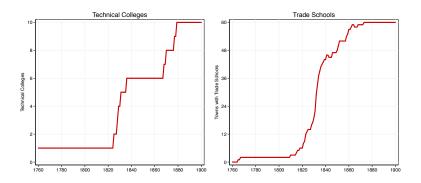
- **Regions.** Institutional change due to Napoleon in the West?
- Other changes. Prussian reforms? Local development of schooling at lower levels? Railroads? Tariff barriers?
- Where is the variation? Does the effect hold within regions?

# Universities and Other Factors

|                                       | (1)                                    | (2)                               | (3)       | (4)       | (5)               | (6)       | (7)       | (8)             |  |
|---------------------------------------|----------------------------------------|-----------------------------------|-----------|-----------|-------------------|-----------|-----------|-----------------|--|
|                                       | Outcome: Count of Manufacturing Events |                                   |           |           |                   |           |           | Outcome: Binary |  |
|                                       |                                        | In All Industries In New Industri |           |           | In All Industries |           |           |                 |  |
|                                       | 1760-1899                              | 1760-1839                         | 1760-1839 | 1760-1839 | 1760-1839         | 1760-1839 | 1760-1839 | 1760-1839       |  |
| University $\times$ 1800-1859         | 0.14***                                | 0.13***                           | 0.13***   | 0.07**    | 0.12***           | 0.06**    | 0.07***   | 0.05***         |  |
|                                       | (0.04)                                 | (0.03)                            | (0.03)    | (0.03)    | (0.03)            | (0.03)    | (0.01)    | (0.01)          |  |
| University $\times$ 1860-1899         | 0.06**                                 |                                   |           |           |                   |           |           |                 |  |
|                                       | (0.03)                                 |                                   |           |           |                   |           |           |                 |  |
| Free Enterprise Law                   | 0.10***                                | 0.07*                             | 0.07*     |           | 0.07*             |           | 0.01      |                 |  |
|                                       | (0.03)                                 | (0.04)                            | (0.04)    |           | (0.04)            |           | (0.01)    |                 |  |
| Early Manufactures $\times$ Post-1800 | 0.15***                                | 0.20***                           | 0.20***   | 0.18**    | 0.11**            | 0.09      | 0.04      | 0.03            |  |
|                                       | (0.05)                                 | (0.07)                            | (0.07)    | (0.07)    | (0.06)            | (0.06)    | (0.02)    | (0.02)          |  |
| Coal $\times$ Post-1800               | -0.03                                  | -0.02                             | -0.02     | -0.08*    | -0.01             | -0.08*    | 0.03**    | -0.00           |  |
|                                       | (0.04)                                 | (0.04)                            | (0.04)    | (0.05)    | (0.03)            | (0.04)    | (0.01)    | (0.02)          |  |
| Coal $\times$ Post-1840               | 0.13***                                |                                   |           |           |                   |           |           |                 |  |
|                                       | (0.05)                                 |                                   |           |           |                   |           |           |                 |  |
| Railroad Connection                   | 0.24***                                |                                   |           |           |                   |           |           |                 |  |
|                                       | (0.06)                                 |                                   |           |           |                   |           |           |                 |  |
| Higher School                         | 0.18***                                | 0.20***                           | 0.11      | 0.11      | 0.08              | 0.09      | 0.05*     | 0.04            |  |
|                                       | (0.04)                                 | (0.07)                            | (0.09)    | (0.09)    | (0.08)            | (0.08)    | (0.03)    | (0.03)          |  |
| Higher School: Lead                   |                                        |                                   | 0.14**    | 0.13**    | 0.13**            | 0.12**    | 0.05**    | 0.05**          |  |
|                                       |                                        |                                   | (0.07)    | (0.07)    | (0.06)            | (0.06)    | (0.02)    | (0.02)          |  |
| Higher School: Lag                    |                                        |                                   | 0.09      | 0.09      | 0.10              | 0.09      | 0.02      | 0.02            |  |
|                                       |                                        |                                   | (0.10)    | (0.10)    | (0.09)            | (0.09)    | (0.04)    | (0.04)          |  |
| City FE                               | Yes                                    | Yes                               | Yes       | Yes       | Yes               | Yes       | Yes       | Yes             |  |
| Time FE                               | Yes                                    | Yes                               | Yes       | No        | Yes               | No        | Yes       | No              |  |
| Territory-×-Time FE                   | No                                     | No                                | No        | Yes       | No                | Yes       | No        | Yes             |  |
| Observations                          | 15778                                  | 9016                              | 9016      | 9016      | 9016              | 9016      | 9016      | 9016            |  |
| Mean Outcome                          | 0.27                                   | 0.19                              | 0.19      | 0.19      | 0.17              | 0.17      | 0.12      | 0.12            |  |

- Unit of observation is a town-period: 2254 towns, 20-year time periods, 1760 to 1899

- 'New' manufacturing defined at town-level: two-digit industry in which town had no activity before 1760


- within 'territory' variation: Principality of Brunswick: 9 close, 9 far; Province of Saxony: 91 close, 63 far

# Larger Universities Drive These Effects

|                                          | (1)                            | (2)      | (3)            |  |
|------------------------------------------|--------------------------------|----------|----------------|--|
|                                          | Outcome: Manufacturing Events  |          |                |  |
|                                          | All Cities Exclude Cities Near |          |                |  |
|                                          |                                | Berli    | n or Munich    |  |
|                                          | Baseline                       | Baseline | Large v. Small |  |
| University × 1800-1859                   | 0.14***                        | 0.13***  |                |  |
|                                          | (0.04)                         | (0.04)   |                |  |
| University × 1860-1899                   | 0.07**                         | 0.06     |                |  |
|                                          | (0.03)                         | (0.04)   |                |  |
| Large University × 1800-1859             |                                |          | 0.16***        |  |
|                                          |                                |          | (0.05)         |  |
| Small University × 1800-1859             |                                |          | 0.07           |  |
|                                          |                                |          | (0.05)         |  |
| Large University × 1860-1899             |                                |          | 0.14***        |  |
|                                          |                                |          | (0.05)         |  |
| Small University x 1860-1899             |                                |          | -0.08**        |  |
|                                          |                                |          | (0.04)         |  |
| City FE                                  | Yes                            | Yes      | Yes            |  |
| Time FE                                  | Yes                            | Yes      | Yes            |  |
| Observations                             | 15778                          | 11361    | 11361          |  |
| <i>p</i> -value: Large = Small 1800-1859 |                                |          | 0.10           |  |
| p-value: Large = Small 1860-1899         |                                |          | 0.00           |  |

'Large' are above median enrollment (top 7). 'Small' are below (bottom 8).

# Other Changes in Education Come Later & Elsewhere



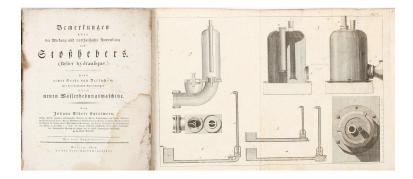
- Technical colleges Technische Hochschulen not in university towns, with exception of Munich (est. 1868) and Berlin (est. 1879)
- Trade schools Gewerbeschulen most in cities without universities

# Hypothesis 2: Knowledge Intensive Manufacturing

Question — 'Was university exposure in fact associated with shifts in more knowledge-intensive industries?'

We define as 'knowledge intensive' industries — those using inventions by relatively more university-educated inventors

# Evidence on Invention


### Catalogue of major inventions and discoveries

- Darmstädter et al.'s Handbuch zur Geschichte der Naturwissenschaften und der Technik (1908)
- 60+ contributors including multiple Nobel Laureates
- Describes contributions, identifies inventors

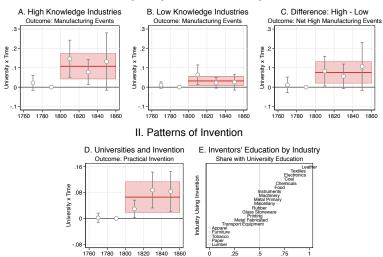
#### We gather our own data on location, education, employment

• We research individual biographies in *Allgemeine Deutsche Biographie, Neue Deutsche Biographie,* historical sources...

# Example of an invention in our data



#### Figure: Hydraulic lift invented 1805 by Johann Albert Eytelwein


# Inventions — Location, Industry, & Inventors' Education

| Subject                             | Translation                     | Year | Town     | Industry  | University |
|-------------------------------------|---------------------------------|------|----------|-----------|------------|
| Registrierapparate, selbsttätige    | Automatic register<br>apparatus | 1805 | Berlin   | Equipment | 1          |
| Spannungsreihe<br>der Metalle       | Metal stress tests              | 1808 | Halle    | Metals    | 1          |
| Glycirrhizin                        | Glycyrrhizic acid               | 1808 | Kiel     | Chemicals | 1          |
| Stahl- und Flus-<br>seisenbereitung | Steel and cast iron production  | 1811 | Essen    | Metals    | 0          |
| Silbersalze                         | Silver salts                    | 1811 | Bayreuth | Chemicals | 1          |

Table: Example of several observations we hand-code

# Universities and Knowledge Intensive Manufacturing

Compare Towns Above and Below Median Distance to University



I. Manufacturing in High and Low Knowledge Industries

Hypothesis 3: Technological Change

- Evidence so far does not indicate the *technology* actually used
- Examine firm-level evidence from Germany's leading industrial region, Saxony
- Measure technology with mechanization of production
  - Mechanized factory 'cotton machine spinning' (Baumwollmaschinespinnerei)
  - Non-Mechanized factory 'cotton spinning' (Baumwollspinnerei)
- Compare firms in cities closer to and further from university

# Universities and Technological Change

Mechanization in Factories 1800-1830

|                       | (1)             | (2)     | (3)    | (4)      |
|-----------------------|-----------------|---------|--------|----------|
|                       | Number of Firms |         | Number | of Firms |
|                       | Mech            | anized  | Not Me | chanized |
| University            | 1.90***         | 1.50*** | 0.55   | 0.43     |
|                       | (0.64)          | (0.56)  | (0.66) | (0.64)   |
| Lags of Manufacturing |                 | Yes     |        | Yes      |
| Observations          | 164             | 164     | 164    | 164      |
| Mean                  | 1.17            | 1.17    | 0.25   | 0.25     |

#### Table: The mechanization of factories in Saxony

- Outcome: mechanized firms in a city 1800-1830, "first phase of the Industrial Revolution" (Forberger 1982)

- Poisson regression cols 1-4, OLS cols 5-6

- Control for appearance of non-mechanized firms in prior periods, data on firms in 164 towns

# Hypothesis 4: The Quality of Innovation

Were universities associated with innovations that took German industry towards or pushed out the world technology frontier?

- Examine data on exhibits and prizes at first world's fair
  Crystal Palace 1851, following Moser (2005)
- Punchline
  - Cities near universities look like Belgium
  - Cities far from universities look like Spain
  - Cities below median distance to university...
    - 58% of total exhibits from our study area
    - 69% of high quality award-winning exhibits

# The Quality of Industrial Innovation

University Exposure and Prizes at the First World's Fair

|              | (1)                                     | (2)     | (3)     | (4)       | (5)          | (6)          |
|--------------|-----------------------------------------|---------|---------|-----------|--------------|--------------|
|              | Outcome: Number of Exhibits from a City |         |         |           |              | ity          |
|              | Total                                   | Low     | High    | Hi        | gh Quality E | Ву Туре      |
|              | Exhibits                                | Quality | Quality | Materials | Machines     | Manufactures |
| University   | 0.34*                                   | 0.14    | 0.82**  | 1.03***   | 1.54***      | 0.65*        |
|              | (0.19)                                  | (0.14)  | (0.37)  | (0.31)    | (0.31)       | (0.35)       |
| Observations | 2254                                    | 2254    | 2254    | 2254      | 2254         | 2254         |

- Outcome: number of exhibits of given type
- Poisson regression model

# Larger Take-Aways

- 1. Canonical example of role of higher education in catch-up growth and in changing in knowledge production
  - Indicates universities not transhistorically good for growth
  - Invites us to reconsider definition of 'science' in economics
- 2. Shift to industrialization occurs earlier and differently than often assumed in the early 1800s and around universities
  - Evidence on timing consistent with East German research
- 3. Sequence of political and cultural changes indicates importance of larger social processes for growth
  - Equally German experience with war and Fascism in 20th century indicates potential fragility of science-based growth