Inflation Outlook

John H. Cochrane Hoover Institution, Stanford University

Where we are

Approach

Model: $E_t dx_t = \sigma(i_t - \pi_t) dt$ $E_t d\pi_t = (\rho \pi_t - \kappa x_t) dt$ $dv_t = (rv_t + i_t - \pi_t - \tilde{s}_t) dt$

Shock to \tilde{s}_t with no change in interest rate i_t .

Response to 1% Interest Rate Rise

1% Fiscal Shock + Taylor Rule Fed Response $i_t = \theta \pi_t; \ \theta = 1$

Fed responds late to a fiscal shock

We need not have inflation forever

Worries

- *Can* the Fed (alone) raise rates, lower inflation?
 - 1. The *point* is to cause a bit of recession.

$$x_{t} = E_{t} x_{t+1} - \sigma(i_{t} - E_{t} \pi_{t+1})$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa x_t$$

Raise *i*, lower *x*, lower π .

- 2. Recession politics?
- 3. All AD is not the same interest-sensitive hit more.
- 4. Fiscal interactions:
 - A. Higher interest costs. $25T \times 1\% = 250b$
 - B. Fed balance sheet losses. \$9T!
 - C. Recession stimulus and bailout. Another 30% GDP?
 - D. Unreformed current and long-term deficits.
- The next shock?

All AD is not the same: shift away from interest-sensitive components

Source: NAR, Haver Analytics, Apollo Chief Economist

1